Advertisement

Apidologie

, Volume 41, Issue 1, pp 45–53 | Cite as

The reliability of morphological traits in the differentiation of Bombus terrestris and B. lucorum (Hymenoptera: Apidae)

  • Stephan Wolf
  • Mandy Rohde
  • Robin F. A. Moritz
Original Article

Abstract

The bumblebees of the subgenus Bombus sensu strictu are a notoriously difficult taxonomic group because identification keys are based on the morphology of the sexuals, yet the workers are easily confused based on morphological characters alone. Based on a large field sample of workers putatively belonging to either B. terrestris or B. lucorum, we here test the applicability and accuracy of a frequently used taxonomic identification key for continental European bumblebees and mtDNA restriction fragment length polymorphism (RFLP) that are diagnostic for queens to distinguish between B. terrestris and B. lucorum, two highly abundant but easily confused species in Central Europe. Bumblebee workers were grouped into B. terrestris and B. lucorum either based on the taxonomic key or their mtDNA RFLP. We also genotyped all workers with six polymorphic microsatellite loci to show which grouping better matched a coherent Hardy-Weinberg population. Firstly we could show that the mtDNA RFLPs diagnostic in queens also allowed an unambiguous discrimination of the two species. Moreover, the population genetic data confirmed that the mtDNA RFLP method is superior to the taxonomic tools available. The morphological key provided 45% misclassifications for B. lucorum and 5% for B. terrestris. Hence, for studies on B. terrestris we recommend to double check species identity with mtDNA RFLP analysis, especially when conducted in Central Europe.

bumblebee identification morphology mtDNA population genetics 

Fiabilité des caractères morphologiques dans la différenciation de Bombus terrestris et B. lucorum (Hymenoptera : Apidae)

bourdons identification morphologie ADN mitochondrial génétique des populations 

Die Verlässlichkeit von morphologischen Merkmalen bei der Unterscheidung von Bombus terrestris und B. lucorum (Hymenoptera: Apidae)

Zusammenfassung

Die Artbestimmung bei Hummelarbeiterinnen der Untergattung Bombus sensu strictu mittles morphologischer Merkmale hat sich wiederholt als schwierig erwiesen, da morphologische Bestimmungsmerkmale zwar bei Geschlechtstieren (Königinnen und Drohnen) eine gute Unterscheidung zulassen, bei Arbeiterinnen jedoch häufig uneindeutig sind.

Basierend auf einer grossen Freilandstichprobe von B. terrestris / B. lucorum Arbeiterinnen, zwei häufige, aber schwer zu unterscheidende mitteleuropäische Arten, testen wir hier die Anwendbarkeit und diagnostische Verlässlichkeit zweier Bestimmungsmethoden. Zum Einen, die eines häufig genutzten Bestimmungsschlüssels für mitteleuropäische Hummeln, zum Anderen, mtDNA Restriktions-Fragmentlängen-Polymorphismen (RFLP), die eine Artunterscheidung bei Königinnen von B. terrestris und B. lucorum erlauben. Die Hummelarbeiterinnen wurden dabei basierend auf entweder morphologischen Merkmalen oder anhand ihrer mtDNA RFLPs zu B. terrestris oder B. lucorum zugeordnet. Alle Individuen wurden an sechs Mikrosatelliten-Loci genotypisiert um zu testen, welche der beiden Artgruppierungen (Morphologie- oder mtDNA-basiert) besser mit einer zu erwartenden Hardy-Weinberg Population übereinstimmt.

Zum Ersten konnten wir zeigen, dass die für Königinnen diagnostischen mtDNA RFLPs auch bei Arbeiterinnen eine eindeutige Artbestimmung zulassen. Darüber hinaus konnten wir durch unsere populationsgenetischen Analysen bestätigen, dass die Artbestimmung mittels mtDNA RFLPs der durch morphologische Merkmale in Präzision deutlich überlegen ist. Die Artbestimmung mittels des Bestimmungsschlüssels führte zu 45% Fehlbestimmungen bei B. lucorum, Fehlbestimmungen bei B. terrestris wurden in 5% aller Fälle gefunden. Folglich empfehlen wir die verlässliche Artbestimmung mittels genetischer Methoden bei Studien an B. terrestris, vor allem, wenn diese in Mitteleuropa durchgeführt werden und populationsgenetische Untersuchungen beinhalten.

Hummel Artbestimmung Morphologie mtDNA Populationsgenetik 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsch A. (1997) Abgrenzung der Hummel-Arten Bombus cryptarum und B. lucorum mittels männlicher Labialdrüsen-Sekrete und morphologischer Merkmale (Hymenoptera, Apidae), Entomol. Gen. 22, 129–145.Google Scholar
  2. Bertsch A., Schweer H., Titze A., Tanaka H. (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera: Apidae), Insect. Soc. 52, 45–54.CrossRefGoogle Scholar
  3. Chapman R.E., Wang J., Bourke A.F.G. (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumblebee pollinators, Mol. Ecol. 12, 2801–2808.PubMedCrossRefGoogle Scholar
  4. Chittka L., Gumpert A., Kunze J. (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species, Behav. Ecol. 8, 239–249.CrossRefGoogle Scholar
  5. Darvill B., Knight M.E., Goulson D. (2005) Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos 107, 471–478.CrossRefGoogle Scholar
  6. Dramstad W.E. (1996) Do bumblebees (Hymenoptera, Apidae) really forage close to their nests? J. Insect Behav. 9, 163–182.CrossRefGoogle Scholar
  7. Dramstad W.E., Fry G. (1995) Foraging activity of bumblebees (Bombus) in relation to flower resources on arable land, Agr. Ecosyst. Environ. 53, 123–135.CrossRefGoogle Scholar
  8. Dramstad W.E., Fry G.L.A., Schaffer M.J. (2003) Bumblebee foraging — in closer really better? Agr. Ecosyst. Environ. 95, 349–357.CrossRefGoogle Scholar
  9. Duchateau M.J., Velthuis H.H.W., Boomsma J.J. (2004) Sex ratio variation in the bumblebee Bombus terrestris, Behav. Ecol. 15, 71–82.CrossRefGoogle Scholar
  10. Ellis J.S., Knight M.E., Goulson D. (2005) Delineating species for conservation using mitochondrial sequence data: the taxonomic status of two problematic Bombus species (Hymenoptera: Apidae), J. Insect Conserv. 9, 75–83.CrossRefGoogle Scholar
  11. Ellis J.S., Knight M.E., Darvill B., Goulson D. (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae), Mol. Ecol. 15, 4375–4386.PubMedCrossRefGoogle Scholar
  12. Estoup A., Solignac M., Harry M., Cornuet J.-M. (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species Apis mellifera and Bombus terrestris, Nucleic Acids Research 21, 1427–1431.PubMedCrossRefGoogle Scholar
  13. Estoup A., Taillez C., Cornuet J.-M., Solignac M. (1995) Size homoplasy and mutationalprocesses of interrupted microsatellites in Apidae species, Apis mellifera and Bombus terrestris, Mol. Biol. Evol. 12, 1074–1084.PubMedGoogle Scholar
  14. Falush D., Stephens M., Prichard J.K. (2003) Interference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics 164, 1567–1587.PubMedGoogle Scholar
  15. Fussell M., Corbet S.A. (1992) Flower usage by bumblebees: A basis for forage plant management, J. Appl. Ecol. 29, 451–465.CrossRefGoogle Scholar
  16. Gerloff C.U., Schmid-Hempel P. (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera, Apidae), Oikos 111, 67–80.CrossRefGoogle Scholar
  17. Goudet J. (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics, J. Hered. 86, 485–486.Google Scholar
  18. Goulson D., Stout J.D. (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera, Apidae), Apidologie 32, 105–111.CrossRefGoogle Scholar
  19. Hanley M.E., Franco M., Pichon S., Darvill B., Goulson D. (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants, Funct. Ecol. 22, 592–598.CrossRefGoogle Scholar
  20. Hartl D.L., Clarke A.G. (1997) Principles of population genetics, 3rd ed., Sinauer Associates, Inc.Google Scholar
  21. Herrmann F., Westphal C., Moritz R.F.A., Steffan-Dewenter I. (2007) Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes, Mol. Ecol. 16, 1167–1178.PubMedCrossRefGoogle Scholar
  22. Kalinowski S.T. (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness, Mol. Ecol. Notes 5, 187–189.CrossRefGoogle Scholar
  23. Kraus F.B., Wolf S., Moritz R.F.A. (2009) Male flight distance and population sub-structure in the bumblebee Bombus terrestris, J. Anim. Ecol. 78, 247–252.PubMedCrossRefGoogle Scholar
  24. Kwon Y.J., Saeed S. (2003) Effect of temperature on the foraging activity of Bombus terrestris L. (Hymenoptera, Apidae) on greenhouse hot pepper (Capsicum annuum L.), Appl. Entomol. Zool. 38, 275–280.CrossRefGoogle Scholar
  25. Mauss V. (1994) Bestimmungsschlüssel für Hummeln, Deutscher Jugendbund für Naturbeobachtungen (DJN), Hamburg.Google Scholar
  26. Meek B., Loxton D., Sparks T., Pywell R., Pickett H., Nowakowski M. (2002) The effect of arable field margin composition on invertebrate biodiversity, Biol. Conserv. 106, 259–271.CrossRefGoogle Scholar
  27. Michener C.D. (2000) Bees of the world, John Hopkins University Press, Maryland, USA.Google Scholar
  28. Murray T.E., Fitzpatrick U., Brown M.J.F., Paxton R.J. (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs, Conserv. Gen. 9, 653–666.CrossRefGoogle Scholar
  29. Osborne J.L., Martin A.P., Carreck N.L., Swain J.L., Knight M.E., Goulson D., Hale R.J., Sanderson R.A. (2008) Bumblebee flight distances in relation to the forage landscape, J. Anim. Ecol. 77, 406–415.PubMedCrossRefGoogle Scholar
  30. Pritchard J.K., Stephens M., Donnelly P. (2000) Interference of population structure from multilocus genotype data, Genetics 155, 945–959.PubMedGoogle Scholar
  31. Raine N.E., Chittka L. (2008) The correlation of learning speed and natural foraging success in bumblebees, Proc. R. Soc. London B 275, 803–808.CrossRefGoogle Scholar
  32. Raine N.E., Rossmo D.K., Le Comber S.C. (2009) Geographic profiling applied to testing models of bumblebee foraging, J. R. Soc. Interface 6, 307–319.PubMedCrossRefGoogle Scholar
  33. Saville N.M., Dramstad W.E., Fry G.L.A., Corbet S.A. (1997) Bumblebee movement in a fragmented agricultural landscape, Agr. Ecosyst. Environ. 61, 145–154.CrossRefGoogle Scholar
  34. Schmid-Hempel P., Durrer S. (1991) Parasites, floral resources and reproduction in natural populations of bumblebees, Oikos 62, 342–350.CrossRefGoogle Scholar
  35. Tanaka H., Roubik D.W., Kato M., Liew F., Gunsalam G. (2001) Phylogenetic position of Apis nuluensis of northern Borneo and phylogeography of A. cerana as inferred from mitochondrial DNA sequences, Insect. Soc. 48, 44–51.CrossRefGoogle Scholar
  36. von Hagen E. (1991) Hummeln: bestimmen, ansiedeln, vermehren, schützen, 3rd ed., Augsburg: Natur-Verlag.Google Scholar
  37. Walsh P.S., Metzger D.A., Higuchi R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, Biotechniques 10, 506–512.PubMedGoogle Scholar
  38. Wang J. (2004) Sibship reconstruction from genetic data with typing errors, Genetics 166, 1963–1979.PubMedCrossRefGoogle Scholar
  39. Waser N.M., Chittka L., Price M.V., Williams N.M., Ollerton J. (1996) Generalization in pollination systems, and why it matters, Ecology 77, 1043–1060.CrossRefGoogle Scholar
  40. Westphal C., Steffan-Dewenter I., Tscharntke T. (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence, Oecologia 149, 289–300.PubMedCrossRefGoogle Scholar
  41. Widmer A., Schmid-Hempel P., Estoup A., Scholl A. (1998) Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira, Heredity 81, 568–572.CrossRefGoogle Scholar
  42. Williams P.H. (1994) Phylogenetic relationships among bumble bees (Bombus Latr.): a reappraisal of morphological evidence, Syst. Entomol. 19, 327–344.CrossRefGoogle Scholar
  43. Williams P.H. (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini), Bull. Nat. Hist. Museum (Entomology) 67, 79–152.Google Scholar
  44. Wolf S., Moritz R.F.A. (2008) Foraging distance in Bombus terrestris (Hymenoptera: Apidae), Apidologie 39, 419–427.CrossRefGoogle Scholar
  45. Wolf S., Moritz R.F.A. (2009) Pollination potential of bumblebee (Bombus spec.) drones (Hymenoptera: Apidae), submitted.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Stephan Wolf
    • 1
  • Mandy Rohde
    • 1
  • Robin F. A. Moritz
    • 1
  1. 1.Institut für BiologieMartin-Luther-Universität Halle-WittenbergHalle/SaaleGermany

Personalised recommendations