Skip to main content

Advertisement

Log in

Conservation ecology of bees: populations, species and communities

Écologie de la conservation des abeilles: populations, espèces et communautés

Ökologische Aspekte des Schutzes von Bienen: Populationen, Arten, Artgemeinschaften

  • Review Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Recent concerns regarding the decline of plant and pollinator species, and the impact on ecosystem functioning, has focused attention on the local and global threats to bee diversity. As evidence for bee declines is now accumulating from over broad taxonomic and geographic scales, we review the role of ecology in bee conservation at the levels of species, populations and communities. Bee populations and communities are typified by considerable spatiotemporal variation; whereby autecological traits, population size and growth rate, and plant-pollinator network architecture all play a role in their vulnerability to extinction. As contemporary insect conservation management is broadly based on species- and habitattargeted approaches, ecological data will be central to integrating management strategies into a broader, landscape scale of dynamic, interconnected habitats capable of delivering bee conservation in the context of global environmental change.

Zusammenfassung

Die meisten der bereits ausgestorbenen oder vom Aussterben bedrohten Arten sind Insekten. Nichtsdestotrotz ist der Schutz von Insekten bisher weitgehend vernachlässigt worden. Die Befürchtungen jedoch, dass Pflanzen und ihre Bestäuber Rückgänge verzeichnen und dementsprechend Ökosystemfunktionen negativ beeinflussen können, hat letztendlich die lokalen und globalen Bedrohungen der Bienendiversität ins Schlaglicht gerückt. Anzeichen für den Rückgang von Bienen häufen sich sowohl in taxonomischer als auch in geographischer Hinsicht. Wir geben hier eine Übersicht über die Rolle ökologischer Faktoren im Bienenschutz, wobei wir besonders die Frage der Arten, Populationen und Artgemeinschaften beleuchten.

Erfolreicher Artenschutz erfordert zunächst ein grundlegendes Verständnis von zwischenartlichen Wechselwirkungen und von autökologischen Merkmalen (Abb. 1 und Tab. I). Das Aussterben von Bienenarten ist in vielen Fällen nicht dokumentiert und demzufolge sind vergleichende Analysen wichtig, um autökologische Faktoren erkennen zu können, die mit der Anfälligkeit zum Artenrückgang verknüpft sein können. Bienenpopulationen und Bienengemeinschaften zeichnen sich durch erhebliche raumzeitliche Schwankungen hinsichtlich ihrer Häufigkeit und Zusammensetzung aus, so dass die Variabilität dieser ökologischen Daten dazu führen kann, dass lange Beobachtungszeiträme notwendig sind, um faktische Rückgange sichtbar machen zu können. Im Idealfall würde die Bestimmung kritischer Werte der Populationsgrössen und des Populationswachstums experimentelle Ansätze erfordern. In der Praxis werden aufgrund der logistischen Anforderungen, dem Problem fehlender Wiederholungen und den räumlichen Grössenordnungen jedoch meist Modellansätze bevorzugt, um Populationsrückgänge und Antworten auf regelnde Massnahmen sichtbar zu machen. Wir diskutieren hier die Erfassung von drei Schlüsselparametern für die Abschätzung von Populationsgrössen und Wachstumsraten: Ausbreitungsrate, Paarungssystem, sowie Prädatoren, Parasiten und Pathogene. Die Antwort von Einzeltieren, Populationen und Artgemeinschaften von Bienen auf anthropogen bedingte Umweltveränderungen ist primär bedingt durch die räumliche und zeitliche Verteilung von floralen sowie Nist- und Überwinterungsresourcen, die jeweils in Beziehung stehen zum Sammelverhalten und der Ausbreitungsfähigkeit der Bienen. Obwohl die primären Faktoren, die die Verteilung dieser Resourcen bestimmen, bekannt sind, nämlich Habitatverlust, bzw. Fragmentierung, ergeben empirische Daten bezüglich der Antwort der Bienengemeinschaften auf diese Faktoren kein einheitliches Bild (Tab. II). Netzwerktheoretische Ansätzen in Untersuchungen zur Architektur von Pflanzen/Bestäuber Netzwerken lassen jetzt Fortschritte erkennen und haben unsere Fähigkeit verbessert, Interaktionen zwischen Arten auf der Ebene von Gemeinschaften definieren und vorhersehen zu können. Mit Blick auf die globalen Umweltveränderungen wird die akkurate Abschätzung der Zahl, Stärke, Symmetrie und Variabilität dieser Interaktionen und ihr Einfluss auf die Toleranz von Bienengemeinschaften gegen das Aussterben zunehmend an Bedeutung gewinnen. Da gegenwärtige Artenschutzmassnahmen im wesentlichen den Schutz von einzelnen Arten oder von Habitaten im Blick haben, werden ökologische Daten entscheidend sein für die Integration dieser beiden Managementstrategien auf einer breiteren, landschaftsorientierten Ebene von dynamischen und untereinander verbundenden Habitaten, die dann dazu beitragen können, dass Bienenschutz im Kontext globaler Umweltveränderungen möglich wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aizen M.A., Feinsinger P. (1994) Habitat Fragmentation, Native Insect Pollinators, and Feral Honey-Bees in Argentine Chaco Serrano, Ecol. Appl. 4, 378–392.

    Google Scholar 

  • Alcock J. (1997) Competition from large males and the alternative mating tactics of small males of Dawson’s burrowing bee (Amegilla dawsoni) (Apidae, Apinae, Anthophorini), J. Insect Behav. 10, 99–113.

    Google Scholar 

  • Ashworth L., Aguilar R., Galetto L., Aizen M.A. (2004) Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J. Ecol. 92, 717–719.

    Google Scholar 

  • Askew R.R. (1971) Parasitic Insects, Heinemann Educational Books, London, UK.

    Google Scholar 

  • Banaszak J. (1995) Changes in Fauna of Wild Bees in Europe, Pedagogical University, Bydgoszcz, Poland.

    Google Scholar 

  • Bascompte J., Jordano P. (2007) Plant-animal mutualistic networks: The architecture of biodiversity, Annu. Rev. Ecol. Evol. Syst. 38, 567–593.

    Google Scholar 

  • Becker P., Moure J.S., Peralta F.J.A. (1991) More about euglossine bees in Amazonian forest fragments, Biotropica 23, 586–591.

    Google Scholar 

  • Biesmeijer J.C., Roberts S.P., Reemer M., Ohlemueller R., Edwards M., Peeters T., Schaffers A., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.

    PubMed  CAS  Google Scholar 

  • Blanchetot A. (1992) DNA fingerprinting analysis in the solitary bee Megachile rotundata — variability and nest mate genetic-relationships, Genome 35, 681–688.

    PubMed  CAS  Google Scholar 

  • Bogusch P., Kratochvil L., Straka J. (2006) Generalist cuckoo bees (Hymenoptera: Apoidea: Sphecodes) are species-specialist at the individual level, Behav. Ecol. Sociobiol. 60, 422–429.

    Google Scholar 

  • Boomsma J.J., Schmid-Hempel P., Hughes W.O.H. (2005) Life histories and parasite pressure across the major groups of social insects, in: Fellowes M.D.E., Holloway G.J., Rolff J. (Eds.), Insect Evolutionary Ecology, CABI Publishing, London, pp. 139–176.

    Google Scholar 

  • Brady S.G., Sipes S., Pearson A., Danforth B.N. (2006) Recent and simultaneous origins of eusociality in halictid bees, Proc. R. Soc. B Biol. Sci. 273, 1643–1649.

    Google Scholar 

  • Brosi B.J., Daily G.C., Shih T.M., Oviedo F., Durán G. (2008) The effects of forest fragmentation on bee communities in tropical countryside, J. Appl. Ecol. 45, 773–783.

    Google Scholar 

  • Brussard P.F. (1991) The role of ecology in biological conservation, Ecol. Appl. 1, 6–12.

    Google Scholar 

  • Buchmann S.L., Nabhan G.P. (1996) The Forgotten Pollinators, Island Press, Washington, DC.

    Google Scholar 

  • Byrne A., Fitzpatrick Ú. (2009) Bee conservation policy at the global, regional and national levels, Apidologie 40, 194–210.

    Google Scholar 

  • Cane J.H. (1991) Soils of ground-nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth, and climate, J. Kans. Entomol. Soc. 64, 406–413.

    Google Scholar 

  • Cane J.H. (2001) Habitat fragmentation and native bees: a premature verdict? Conserv. Ecol. 5.

  • Cane J.H., Tepedino V.J. (2001) Causes and extent of declines among native North American invertebrate pollinators: Detection, evidence, and consequences, Conserv. Ecol. 5, http://www.consecol. org/vol5/iss1/art1/ (accessed on 16 February 2009).

  • Cane J.H., Sipes S. (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty, in: Waser N.M., Ollerton J. (Eds.), Plant-pollinator interactions from specialization to generalization, University of Chicago Press, Chicago, pp. 99–122.

    Google Scholar 

  • Cane J.H., Minckley R.L., Kervin L.J., Roulston T.H., Williams N.M. (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation, Ecol. Appl. 16, 632–644.

    PubMed  Google Scholar 

  • Chacoff N.A., Aizen M.A. (2006) Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest, J. Appl. Ecol. 43, 18–27.

    Google Scholar 

  • Chapman R.E., Bourke A.F.G. (2001) The influence of sociality on the conservation biology of social insects, Ecol. Lett. 4, 650–662.

    Google Scholar 

  • Cornell H.V., Hawkins B.A. (2003) Herbivore responses to plant secondary compound: a test of phytochemical coevolution theory, Am. Nat. 161, 507–522.

    PubMed  Google Scholar 

  • Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.L., Briese T., Hornig M., Geiser D.M., Martinson V., van Engelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J.H., Cui L.W., Hutchison S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder, Science 318, 283–287.

    PubMed  CAS  Google Scholar 

  • Cresswell J.E., Osborne J.L., Goulson D. (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees, Ecol. Entomol. 25, 249–255.

    Google Scholar 

  • Crozier R.H., Pamilo P. (1996) Evolution of Social Insect Colonies: Sex Allocation and Kin Selection Oxford University Press, New York.

    Google Scholar 

  • Danforth B.N. (1999) Emergence dynamics and bet hedging in a desert bee, Perdita portalis, Proc. R. Soc. B 266, 1985–1994.

    Google Scholar 

  • Danforth B.N. (2002) Evolution of sociality in a primitively eusocial lineage of bees, Proc. Natl Acad. Sci. USA 99, 286–290.

    PubMed  CAS  Google Scholar 

  • Danforth B.N., Ballard S., Ji L.J. (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis (Hymenoptera: Andrenidae), J. Kans. Entomol. Soc. 76, 221–235.

    Google Scholar 

  • Defra (2005) Environmental Stewardship. Defra, London, UK, [online] www.defra.gov.uk/erdp/ schemes/es/default.htm (accessed 16 February 2009).

  • DeFries R.S., Foley J.A., Asner G.P. (2004) Land-use choices: balancing human needs and ecosystem function, Frontiers Ecol. Environ. 2, 249–257.

    Google Scholar 

  • Diaz S. et al. (2005) Biodiversity regulation of ecosystem services, in: Hassan R., Scholes R., Ash N. (Eds.), Ecosystems and Human Well-Being: Current State and Trends, Vol. 1, Island Press, Washington, DC, pp. 297–329.

    Google Scholar 

  • Dick C.W., Roubik D.W., Gruber K.F., Bermingham E. (2004) Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography, Mol. Ecol. 13, 3775–3785.

    PubMed  CAS  Google Scholar 

  • Donaldson J., Nanni I., Zachariades C., Kemper J., Thompson J.D. (2002) Effects of habitat fragmentation on pollinator diversity and plant reproductive success in renosterveld shrublands of South Africa, Conserv. Biol. 16, 1267–1276.

    Google Scholar 

  • Dormann C.F., Schweiger O., Arens P., Augenstein I., Aviron S., Bailey D., Baudry J., Billeter R., Bugter R., Bukácek R., Burel F., Cerny M., De Cock R., De Blust G., DeFilippi R., Diekötter T., Dirksen J., Durka W., Edwards P.J., Frenzel M., Hamersky R., Hendrikx F., Herzog F., Klotz S., Koolstra B., Lausch A., Le Coeur D., Liira J., Maelfait J.P., Opdam P., Roubalova M., Schermann-Legionnet A., Schermann N., Schmidt T., Smulders M.J.M., Speelmans M., Simova P., Verboom J., van Wingerden W., Zobel M. (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity, Ecol. Lett. 11, 234–244.

    Google Scholar 

  • Dukas R. (2005) Bumble bee predators reduce pollinator density and plant fitness, Ecology 86, 1401–1406.

    Google Scholar 

  • Durrer S., Schmid-Hempel P. (1995) Parasites and the regional distribution of bumblebee species, Ecography 18, 114–122.

    Google Scholar 

  • Eickwort G.C., Eickwort J.M., Gordon J., Eickwort M.A. (1996) Solitary behavior in a high altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae), Behav. Ecol. Sociobiol. 38, 227–233.

    Google Scholar 

  • Eickwort G.C., Ginsberg H.S. (1980) Foraging and mating-behavior in Apoidea, Annu. Rev. Entomol. 25, 421–446.

    Google Scholar 

  • Eltz T. (2004) Spatio-temporal variation of apine bee attraction to honeybaits in Bornean forests, J. Trop. Ecol. 20, 317–324.

    Google Scholar 

  • Eltz T., Bruhl C.A., van der Kaars S., Linsenmair K.E. (2002) Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia, Oecologia 131, 27–34.

    Google Scholar 

  • Eviner V.T., Likens G.E. (2008) The effects of pathogens on terrestrial ecosystem function, in: Ostfeld R., Keesing F., Eviner V.T. (Eds.), Infectious Disease Ecology: The Effects of Ecosystems on Disease and of Disease on Ecosystems, Princeton University Press, pp. 260–283.

  • Falk S. (1991) A review of scarce and threatened bees, wasp and ants of Great Britain. Research and Survey in Nature Conservation No. 35, Nature Conservancy Council, UK.

    Google Scholar 

  • FAO (2008) Rapid Assessment of Pollinators’ Status [online] http://www.cbd.int/doc/case-studies/agr/ cs-agr-fao.pdf (accessed 16 February 2008).

  • Fenster C.B., Armbruster W.S., Wilson P., Dudash M.R., Thomson J.D. (2004) Pollination syndromes and floral specialization, Annu. Rev. Ecol. Evol. Syst. 35, 375–403.

    Google Scholar 

  • Firbank L.G., Heard M.S., Woiwod I.P., Hawes C., Haughton A.J., Champion G.T., Scott R.J., Hill M.O., Dewar A.M., Squire G.R., May M.J., Brooks D.R., Bohan D.A., Daniels R.E., Osborne J.L., Roy D.B., Black H.I.J., Rothery P., Perry J.N. (2003) An introduction to the Farm-Scale Evaluations of genetically modified herbicidetolerant crops, J. Appl. Ecol. 40, 2–16.

    Google Scholar 

  • Fisher D.O., Owens I.P.F. (2004) The comparative method in conservation biology, Trends Ecol. Evol. 19, 391–398.

    PubMed  Google Scholar 

  • Fitzpatrick Ú., Murray T.E., Paxton R.J., Brown M.J.F. (2007) Building on IUCN regional red lists to produce lists of species of conservation priority: a model with Irish bees, Conserv. Biol. 5, 1324–1332.

    Google Scholar 

  • Fortuna M.A., Bascompte J. (2006) Habitat loss and the structure of plant-animal mutualistic networks, Ecol. Lett. 9, 278–283.

    Google Scholar 

  • Forup M.L., Henson K.S.E., Craze P.G., Memmott J. (2008) The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands, J. Appl. Ecol. 45, 742–752.

    Google Scholar 

  • Frankham R., Ballou J.D., Briscoe D.A. (2002) Introduction to Conservation Genetics, Cambridge University Press.

  • Franzén M., Larsson M., Nilsson S.G. (2009) Small local population sizes and high habitat patch fidelity in a specialised solitary bee, J. Insect Conserv. 13, 89–95.

    Google Scholar 

  • Frommer U. (2008) Grundlagen der Ausbreitung und aktuellen nördlichen Verbreitung der Efeu-Seidenbiene Colletes hederae Schmidt & Westrich, 1993 in Deutschland (Hymenoptera: Apidae), Mitt. Int. Entomol. Ver. 33, 59–74.

    Google Scholar 

  • Frommer U., Flügel H.-J. (2005) Zur Ausbreitung der Furchenbiene Halictus scabiosae (Rossi, 1790) in Mitteleuropa unter besonderer Berücksichtigung der Situation in Hessen, Mitt. Int. Entomol. Ver. 30, 51–79.

    Google Scholar 

  • Gathmann A., Tscharntke T. (2002) Foraging ranges of solitary bees, J. Anim. Ecol. 71, 757–764.

    Google Scholar 

  • Gegear R.J., Otterstatter M.C., Thomson J.D. (2006) Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information, Proc. R. Soc. Lond. B Biol. Sci. 273, 1073–1078.

    Google Scholar 

  • Ghazoul J. (2005) Buzziness as usual? Questioning the global pollination crisis, Trends Ecol. Evol. 20, 367–373.

    PubMed  Google Scholar 

  • Gilbert F., Gonzales A., Evans-Freke I. (1998) Corridors maintain species richness in the fragmented landscapes of a microecosystem, Proc. R. Soc. Lond. B Biol. Sci. 265, 577–582.

    Google Scholar 

  • Goulson D. (2003) Bumblebees: their behaviour and ecology, Oxford University Press, Oxford.

    Google Scholar 

  • Greenleaf S.S., Kremen C. (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower, Proc. Natl Acad. Sci. USA 103, 13890–13895.

    PubMed  CAS  Google Scholar 

  • Greenleaf S.S., Williams N.M., Winfree R., Kremen C. (2007) Bee foraging ranges and their relationship to body size, Oecologia 153, 589–596.

    PubMed  Google Scholar 

  • Haeseler V. (1973) Zur Kenntnis der Aculeaten- und Chrysididenfauna Schleswig-Holsteins und angrenzender Gebiete (Hymenoptera) 2. Beitrag, Schr. Naturwiss. Ver. Schleswig-Holst. 43, 51–60.

    Google Scholar 

  • Haeseler V. (1974) Aculeate Hymenopteren über Nord- und Ostsee nach Untersuchungen auf Feuerschiffen, Entomol. Scand. 5, 123–136.

    Google Scholar 

  • Haeseler V. (1976) Zur Aculeatenfauna der Nordfriesischen Insel Amrum (Hymenoptera), Schr. Naturwiss. Vereins Schleswig-Holstein 46, 59–78.

    Google Scholar 

  • Haeseler V. (1978) Zur Fauna der aculeaten Hymenopteren der Nordseeinsel Mellum. Ein Beitrag zur Besiedlung küstennaher Inseln, Zool. Jb. Syst. 105, 368–385.

    Google Scholar 

  • Hanski I. (1998) Metapopulation dynamics, Nature 396, 41–49.

    CAS  Google Scholar 

  • Hanski I., Pöyry J. (2006) Insect populations in fragmented habitats, in: Stewart A.J.A., New T.R., Lewis O.T. (Eds.), Insect Conservation Biology, R. Entomol. Soc. Int. Symp. on Insect Conservation Biology, University of Sussex, 12–14 September, 2005, CAB International, Wallingford, UK.

    Google Scholar 

  • Hedrick P.W., Parker J.D. (1997) Evolutionary genetics and genetic variation of haplodiploids and x-linked genes, Annu. Rev. Ecol. Syst. 28, 55–83.

    Google Scholar 

  • Hendrickx F., Maelfait J.P., van Wingerden W., Schweiger O., Speelmasn W., Aviron S., Augenstein I., Billeter R., Bailey D., Bukacek R., Burel F., Diekötter T., Dirksen J., Herzog F., Liira J., Roubalova M., Vandomme V., Bugter R. (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural diversity, J.Appl. Ecol. 44, 340–351.

    Google Scholar 

  • Holzschuh A., Steffan-Dewenter I., Kleijn D., Tscharntke T. (2007) Diversity fo flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context, J. Appl. Ecol. 44, 41–49.

    Google Scholar 

  • Johansen C.A. (1977) Pesticides and pollinators, Annu. Rev. Entomol. 22, 177–192.

    CAS  Google Scholar 

  • Kathirithamby J. (1989) Review of the order Strepsiptera, Syst. Entomol. 14, 41–92.

    Google Scholar 

  • Kearns C.A., Inouye D.W., Waser N.M. (1998) Endangered mutualisms: the conservation of plant-pollinator interactions, Annu. Rev. Ecol. Syst. 29, 83–112.

    Google Scholar 

  • Kevan P.G. (1975) Forest application of the insecticide fenitrothion and its effect on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium SPP.) in: Southern New Brunswick, Canada, Biol. Conserv. 7, 301–309.

    Google Scholar 

  • Kim K.C., Byrne L. (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science, Ecol. Res. 21, 794–810.

    Google Scholar 

  • Kleijn D., Raemakers I. (2008) A retrospective analysis of pollen host plant use by stable and declining bumble bee species, Ecology 89, 1811–1823.

    PubMed  Google Scholar 

  • Klein A.M., Steffan-Dewenter I., Buchori D., Tscharntke T. (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flowervisiting and trap-nesting bees and wasps, Conserv. Biol. 16, 1003–1014.

    Google Scholar 

  • Klein A.-M., Steffan-Dewenter I., Tscharntke T. (2003) Fruit set of highland coffee increases with the diversity of pollinating bees, Proc. R. Soc. Lond. B Biol. Sci. 270, 955–961.

    Google Scholar 

  • Knerer G. (1992) The biology and social behaviour of Evylaeus malachurus (K.) (Hymenoptera; Halictidae) in different climatic regions of Europe, Zool. Jahrb. Abt. Syst. Oekol. Geogr. Tiere 119, 261–290.

    Google Scholar 

  • Knight T.M., Chase J.M., Hillebrand H., Holt R.D. (2006) Predation on mutualists can reduce the strength of trophic cascades, Ecol. Lett. 9, 1173–1178.

    PubMed  Google Scholar 

  • Koeniger G. (1991) Differences in filling of the spermatheca after natural and artificial insemination of the queen honeybee, Apidologie 22, 439–441.

    Google Scholar 

  • Koh L.P., Dunn R.R., Sodhi N.S., Colwell R.K., Proctor H.C., Smith V.C. (2004) Species coextinctions and the biodiversity crisis, Science 305, 1632–1634.

    PubMed  CAS  Google Scholar 

  • Kosior A., Celary W., Olejniczak P., Fijal J., Król W., Solarz W., Plonka P. (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe, Oryx 41, 79–88.

    Google Scholar 

  • Kotiaho J.S., Kaitala V., Komonen A., Päivinen J. (2005) Predicting the risk of extinction from shared ecological characteristics, Proc. Natl Acad. Sci. USA 102, 1963–1967.

    PubMed  CAS  Google Scholar 

  • Kratochwil A., Klatt M. (1989) Apoide Hymenopteren an Ruderalstellen der Stadt Freiburg i. Br. (BRD) — submediterrane Faunenelemente an Standorten kleinräumig hoher Persistenz, Zool. Jahrb. Syst. 116, 379–389.

    Google Scholar 

  • Kremen C., Ricketts T. (2000) Global perspectives on pollination disruptions. Conserv. Biol. 14, 1226–1228.

    Google Scholar 

  • Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensity, Proc. Natl Acad. Sci. USA 99, 16812–16816.

    PubMed  CAS  Google Scholar 

  • Kremen C., Williams N.M., Bugg R.L., Fay J.P., Thorp R.W. (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California, Ecol. Lett. 7, 1109–1119.

    Google Scholar 

  • Kremen C., Williams N.M., Aizen M.A., Gemmill-Herren B., LeBuhn G., Minckley R.L., Packer L., Potts S.G., Roulston T., Steffan-Dewenter I., Vásquez D.P., Winfree R., Adams L., Crone E.E., Greenleaf S.S., Keitt T.H., Klein A.-M., Regetz J., Ricketts T.H. (2007) Pollination and other ecosystem services provided by mobile organisms: a conceptual framework for the effects of land-use change, Ecol. Lett. 10, 299–314.

    PubMed  Google Scholar 

  • Kuhlmann M. (2000) Die Struktur von Stechimmenzönosen (Hymenoptera Aculeata) ausgewählter Kalkmagerrasen des Diemeltales unter besonderer Berücksichtigung der Nutzungsgeschichte und des Requisitenangebotes, Abh. Westf. Mus. Naturkd. 62, 3–102.

    Google Scholar 

  • Kuhlmann M., Else G.R., Dawson A., Quicke D.L.J. (2007) Molecular, biogeographical and phonological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae), Org. Divers. Evol. 7, 155–165.

    Google Scholar 

  • Lande R., Engen S., Saether B.-E. (2003) Stochastic population dynamics in ecology and conservation, Oxford University Press, USA.

    Google Scholar 

  • Larsen T.H., Williams N., Kremen C. (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning, Ecol. Lett. 8, 538–547.

    PubMed  Google Scholar 

  • Lewis O.T. (2006) Climate change, species-area curves and the extinction crises, Phil. Trans. R. Soc. B 361, 163–171.

    PubMed  Google Scholar 

  • Linsley E.G. (1958) The ecology of solitary bees, Hilgardia 27, 543–599.

    Google Scholar 

  • Mayer C., Kuhlmann M. (2004) Synchrony of pollinators and plants in the winter rainfall area of South Africa — observations from a drought year, Trans. R. Soc. S. Afr. 59, 55–57.

    Google Scholar 

  • Meek B., Loxton D., Sparks T., Pywell R., Pickett H., Nowakowski M. (2002) The effect of arable field margin composition on invertebrate biodiversity, Biol. Conserv. 106, 259–271.

    Google Scholar 

  • Memmott J., Waser N.M. (2002) Integration of alien plants into a native flower-pollinator visitation web, Proc. R. Soc. Lond. B Biol. Sci. 269, 2395–2399.

    Google Scholar 

  • Memmott J., Waser N.M., Price M.V. (2004) Tolerance of pollination networks to species extinctions, Proc. R. Soc. Lond. B Biol. Sci. 271, 2605–2611.

    Google Scholar 

  • Memmott J., Craze P.G., Waser N.M., Price M.V. (2007) Global warming and the disruption of plant-pollinator interactions, Ecol. Lett. 10, 710–717.

    PubMed  Google Scholar 

  • Michener C.D. (1974) The social behavior of the bees, Harvard University Press.

  • Michener C.D. (2007) The bees of the world, 2nd ed., Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Minckley R.L., Cane J.H., Kervin L. (2000) Origins and ecological consequences of pollen specialization among desert bees, Proc. R. Soc. Lond. B Biol. Sci. 267, 265–271.

    CAS  Google Scholar 

  • Minckley R.L., Wcislo W.T., Yanega D., Buchmann S.L. (1994) Behavior and Phenology of a Specialist Bee (Dieunomia) and Sunflower (Helianthus) Pollen Availability, Ecology 75, 1406–1419.

    Google Scholar 

  • Moldenke A.R. (1979) Host-plant coevolution and the diversity of bees in relation to the flora of North America, Phytologia 43, 357–419.

    Google Scholar 

  • Morandin L.A., Winston M.L. (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola, Ecol. Appl. 15, 871–881.

    Google Scholar 

  • Moretti M., de Bello F., Roberts S.P.M., Potts S.G. (2009) Taxonomical versus functional responses of bee communities to fire in two contrasting climatic regions, J. Anim. Ecol. 78, 98–108.

    PubMed  Google Scholar 

  • Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees, J. Insect Conserv. 11, 391–397.

    Google Scholar 

  • Müller A. (1996) Host-plant specialization in western palearctic anthidiine bees (Hymenoptera: Apoidea: Megachilidae), Ecol. Monogr. 66, 235–257.

    Google Scholar 

  • Müller A., Kuhlmann M. (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae) — the Asteraceae paradox, Biol. J. Linn. Soc. 95, 719–733.

    Google Scholar 

  • Müller A., Diener S., Schnyder S., Stutz K., Sedivy C., Dorn S. (2006) Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee-flower relationships, Biol. Conserv. 130, 604–615.

    Google Scholar 

  • National Research Council of the National Academies (2006) Status of Pollinators in North America. National Academy Press, Washington, DC.

    Google Scholar 

  • Norris K. (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm, J. Appl. Ecol. 41, 413–426.

    Google Scholar 

  • O’Grady J.J., Reed D.H., Brook B.W., Frankham R. (2004) What are the best correlates of predicted extinction risk? Biol. Conserv. 118, 513–520.

    Google Scholar 

  • O’Toole C., Raw A. (1991) Bees of the World, Sterling Publishing, New York.

    Google Scholar 

  • Okuyama T., Holland J.N. (2008) Network structural properties mediate the stability of mutualistic communities, Ecol. Lett. 11, 208–216.

    PubMed  Google Scholar 

  • Oldroyd B.P., Nanork P. (2009) Conservation of Asian honeybees, Apidologie, 40, 296–312.

    Google Scholar 

  • Packer L., Owen R. (2001) Population genetic aspects of pollinator decline, Conserv. Ecol. 5.

  • Packer L., Zayed A., Grixti J.C., Ruz L., Owen R.E., Vivallo F., Toro H. (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees, Conserv. Biol. 19, 195–202.

    Google Scholar 

  • Pamilo P., Crozier R.H. (1997) Population biology of social insect conservation, Mem. Mus. Victoria 56, 411–419.

    Google Scholar 

  • Pamilo P., Gertsch P., Thorén P., Seppa P. (1997) Molecular population genetics of social insects, Annu. Rev. Ecol. Syst. 28, 1–25.

    Google Scholar 

  • Paxton R.J. (2005) Male mating behaviour and mating systems of bees: an overview, Apidologie 36, 145–156.

    Google Scholar 

  • Paxton R.J., Fries I., Pieniazek N.J., Tengö J. (1997) High incidence of infection of an undescribed microsporidium (Microspora) in the communal bee Andrena scotica (Hymenoptera, Andrenidae), Apidologie 28, 129–141.

    Google Scholar 

  • Paxton R.J., Giovanetti M., Andrietti F., Scamoni E., Scanni B. (1999) Mating in a communal bee Andrena agilissima (Hymenoptera: Andrenidae), Ecol. Ethol. Evol. 11, 371–382.

    Google Scholar 

  • Paxton R.J., Thorén P.A., Estoup A., Tengo J. (2001) Queen-worker conflict over male production and the sex ratio in a facultatively polyandrous bumblebee, Bombus hypnorum: the consequences of nest usurpation, Mol. Ecol. 10, 2489–2498.

    PubMed  CAS  Google Scholar 

  • Paxton R.J., Ayasse M., Field J., Soro A. (2002) Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites, Mol. Ecol. 11, 2405–2416.

    PubMed  CAS  Google Scholar 

  • Pekkarinen A. (1997) Oligolectic bee species in Northern Europe (Hymenoptera, Apoidea), Entomol. Fenn. 8, 205–214.

    Google Scholar 

  • Petanidou T., Ellis W.N., Ellisadam A.C. (1995) Ecogeographical patterns in the incidence of brood parasitism in bees, Biol. J. Linn. Soc. 55, 261–272.

    Google Scholar 

  • Petanidou T., Kallimanis A.S., Tzanopoulos J., Sgardelis S.P., Pantis J.D. (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization, Ecol. Lett. 11, 564–575.

    PubMed  Google Scholar 

  • Peters G. (1972) Ursachen für den Rückgang der seltenen heimischen Hummelarten (Hym., Bombus et Psithyrus), Entomol. Ber. 1972, 85–90.

    Google Scholar 

  • Peters J.M., Queller D.C., Imperatriz-Fonseca V.L., Roubik D.W., Strassmann J.E. (1999) Mate number, kin selection and social conflicts in stingless bees and honeybees, Proc. R. Soc. Lond. B Biol. Sci. 266, 379–384.

    Google Scholar 

  • Pimm S.L., Ayres M., Balmford A., Branch G., Brandon K., Brooks T., Bustamante R., Costanza R., Cowling R., Curran L.M., Dobson A., Farber S., da Fonseca G.A., Gascon C., Kitching R., McNeely J., Lovejoy T., Mittermeier R.A., Myers N., Patz J.A., Raffle B., Rapport D., Raven P., Roberts C., Rodriguez J.P., Rylands A.B., Tucker C., Safina C., Samper C., Stiassny M.L., Supriatna J., Wall D.H., Wilcove D. (2001) Can we defy nature’s end? Science 293, 2207–2208.

    PubMed  CAS  Google Scholar 

  • Pohl H., Beutel R.G. (2008) The evolution of Strepsiptera (Hexapoda), Zoology 111, 318–338.

    PubMed  Google Scholar 

  • Potts S.G., Willmer P.G. (1997) Abiotic and biotic factors influencing nest-site selection in Halictus rubicundus, a gound nesting halictine bee, Ecol. Entomol. 22, 319–328.

    Google Scholar 

  • Potts S.G., Vulliamy B., Dafni A., Ne’eman G., Willmer P. (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642.

    Google Scholar 

  • Potts S.G., Vulliamy B., Roberts S., O’Toole C., Dafni A., Ne’eman G., Willmer P. (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape, Ecol. Entomol. 30, 78–85.

    Google Scholar 

  • Potts S.G., Petanidou T., Roberts S., O’Toole C., Hulbert A., Willmer P. (2006) Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape, Biol. Conserv. 129, 519–529.

    Google Scholar 

  • Potts S.G., Woodcock B.A., Roberts S.P.M., Tscheulin T., Ramsay A.J., Pilgrim E., Brown V.K., Tallowin J.R. (2009) Enhancing pollinator biodiversity in intensive grasslands, J. Appl. Ecol., DOI 10.1111/j.1365-2664.2009.01609.x.

  • Powell J.A., Mackie R.A. (1966) Biological relationships of moth and Yucca whipplei (Lepidoptera: Gelechiidae, Blastobasidae, Prodoxidae), Univ. Calif. Publ. Entomol. 42, 1–59.

    Google Scholar 

  • Powell A.H., Powell G.V.N. (1980) Population dynamics of male euglossine bees in Amazonian forest fragments, Biotropica 19, 176–179.

    Google Scholar 

  • Praz C.J., Müller A., Dorn S. (2008) Specialized bees fail to develop on no-host pollen: do plants chemically protect their pollen? Ecology 89, 795–804.

    PubMed  Google Scholar 

  • Price P.W., Westoby M., Rice B., Atsatt P.R., Fritz R.S., Thompson J.N., Mobley K. (1986) Parasite Mediation in Ecological Interactions, Annu. Rev. Ecol. Syst. 17, 487–505.

    Google Scholar 

  • Price P.W., Westoby M., Rice B. (1988) ParasiteMediated Competition — Some Predictions and Tests, Am. Nat. 131, 544–555.

    Google Scholar 

  • Rasmont P. (1988) Monographie écologique et zoogéographique des bourdons de Belgique et de Belgique (Hymenoptera, Apidae, Bombinae), PhD thesis, Faculté des Sciences Agronomique de l’État, Gembloux, Belgium.

    Google Scholar 

  • Rasmont P., Pauly A., Terzo M., Patiny S., Michez D., Iserbyt S., Barbier Y., Haubruge E. (2005) The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France, FAO report [online] http:// www.fao.org/ag/AGP/AGPS/C-CAB/Castudies/ pdf/1-010.pdf (accessed on 9 February 2009).

  • Ricketts T. (2004) Do tropical forest fragments enhance pollinator activity in nearby coffee crops, Conserv. Biol. 18, 1–10.

    Google Scholar 

  • Robertson C. (1925) Heterotropic bees, Ecology 6, 412–436.

    Google Scholar 

  • Roubik D.W. (1989) Ecology and natural history of tropical bees, Cambridge University Press, Cambridge.

    Google Scholar 

  • Roubik D.W. (2001) Ups and downs in pollinator populations: when is there a decline? Conservation Ecology 5, http://www.consecol. org/vol5/iss1/art2/ (accessed on 16 February 2009).

  • Sakagami S.F., Munakata M. (1972) Distribution and bionomics of a transpalearctic eusocial halictine bee, Lasioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life at high latitude, J. Fac. Sci. Hokkaido Univ. Ser VI Zool. 18, 411–439.

    Google Scholar 

  • Samejima H., Marzuki M., Nagamitsu T., Nakasizuka T. (2004) The effects of human disturbance on a stingless bee community in a tropical rainforest, Biol. Conserv. 120, 577–587.

    Google Scholar 

  • Sammataro D., Gerson U., Needham G. (2000) Parasitic mites of honey bees: life history, implications and impact, Annu. Rev. Entomol. 45, 519–548.

    PubMed  CAS  Google Scholar 

  • Schlüns H., Moritz R.F.A., Neumann P., Kryger P., Koeniger G. (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens, Anim. Behav. 70, 125–131.

    Google Scholar 

  • Schmid-Hempel P. (2001) On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites, Naturwissenschaften 88, 147–158.

    PubMed  CAS  Google Scholar 

  • Schmid-Hempel R., Schmid-Hempel P. (2000) Female mating frequencies in Bombus spp. from Central Europe, Insectes Soc. 47, 36–41.

    Google Scholar 

  • Schmidt J.O., Thoenes S.C. (1992) Criteria for nest site selection in honey-bees (Hymenoptera: Apidae) — preference between pheromone attractants and cavity shapes, Environ. Entomol. 21, 1130–1133.

    Google Scholar 

  • Schoener T.W. (1979) Generality of the size-distance relation in models of optimal foraging, Am. Nat. 114, 902–914.

    Google Scholar 

  • Schtickzelle N., Baguette M. (2004) Metapopulation viability analysis of the bog fritillary butterfly using RAMAS/GIS, Oikos 104, 277–290.

    Google Scholar 

  • Schultz C.B., Hammond P.C. (2003) Using population viability analysis to develop recovery criteria for endangered insects: case study of the Fender’s Blue Butterfly, Conserv. Biol. 17, 1372–1385.

    Google Scholar 

  • Schweiger O., Maelfait J.P., Van Wingerden W., Hendrikx F., Billeter R., Speelmans M., Augenstein I., Aukema B., Aviron S., Bailey D., Bukacek R., Burel F., Diekötter T., Dirksen J., Frenzel M., Herzog F., Liira J., Roubalova M., Bugter R. (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales, J. Appl. Ecol. 42, 1129–1139.

    Google Scholar 

  • Scott V.L. (1994) Phenology and trap selection of three species of Hylaeus (Hymenoptera, Colletidae) in upper Michigan, Gt. Lakes Entomol. 27, 39–47.

    Google Scholar 

  • Scott V.L., Kelley S.T., Strickler K. (2000) Reproductive biology of two Coelioxys cleptoparasites in relation to their Megachile hosts (Hymenoptera: Megachilidae), Ann. Entomol. Soc. Am. 93, 941–948.

    Google Scholar 

  • Simberloff D. (1988) The contribution of population and community biology to conservation science, Annu. Rev. Ecol. Syst. 19, 473–511.

    Google Scholar 

  • Simonthomas R.T., Simonthomas A.M.J. (1980) Philanthus triangulum and its recent eruption as a predator of honeybees in an Egyptian oasis, Bee World 61, 97–107.

    Google Scholar 

  • Singer M.S. (2008) Evolutionary ecology of polyphagy, in: Tilmon K.J. (Ed.), Specialization, speciation, and radiation: The evolutionary biology of herbivorous insects, University of California Press, Berkeley, pp. 29–42.

    Google Scholar 

  • Smith A.R., Wcislo W.T., O’Donnell S. (2007) Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae), Behav. Ecol. Sociobiol. 61, 1111–1120.

    Google Scholar 

  • Soucy S.L. (2002) Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae), Ann. Entomol. Soc. Am. 95, 57.

    Google Scholar 

  • Staples D.F., Taper M.L., Shepard B.B. (2005) Riskbased vaible population monitoring, Conserv. Biol. 19, 1908–1916.

    Google Scholar 

  • Steffan-Dewenter I. (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows, Conserv. Biol. 17, 1036–1044.

    Google Scholar 

  • Steffan-Dewenter I., Münzenberg U., Bürger C., Thies C., Tscharntke T. (2002) Scale-dependent effects of landscape context on three pollinator guilds, Ecology 83, 1421–1432.

    Google Scholar 

  • Steffan-Dewenter I., Tscharntke T. (1999) Effects of habitat isolation on pollinator communities and seed set, Oceologia 121, 432–440.

    Google Scholar 

  • Steffan-Dewenter I., Tscharntke T. (2001) Succession of bee communities on fallows, Ecography 24, 83–93.

    Google Scholar 

  • Steffan-Dewenter I., Tscharntke T. (2002) Insect communities and biotic interactions on fragmented calcareous grasslands — a mini review, Biol. Conserv. 104, 275–284.

    Google Scholar 

  • Steffan-Dewenter I., Westphal C. (2008) The interplay of pollinator diversity, pollination services and landscape change, J. Appl. Ecol. 45, 737–741.

    Google Scholar 

  • Steffan-Dewenter I., Potts S.G., Packer L. (2005) Pollinator diversity and crop pollination services are at risk, Trends Ecol. Evol. 20, 651–652.

    PubMed  Google Scholar 

  • Stork N.E., Lyal C.H.C. (1993) Extinction or Co-Extinction Rates, Nature 366, 307–307.

    Google Scholar 

  • Stout J.C., Morales C.L. (2009) Ecological impacts of invasive alien species on bees, Apidologie 40, 388–409.

    Google Scholar 

  • Strickler K. (1979) Specialization and foraging efficiency of solitary bees, Ecology 60, 998–1009.

    Google Scholar 

  • Tauber M.J., Tauber C.A., Nyrop J.P., Villani M.G. (1998) Moisture, a vital but neglected factor in the seasonal ecology of insects: hypotheses and tests of mechanisms, Environ. Entomol. 27, 523–530.

    Google Scholar 

  • Tewksbury J.J., Levey D.J., Haddad N.M., Sargent S., Orrock J.L., Weldon A., Danielson B.J., Brinkerhoff J., Damschen E.I., Townsend P. (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes, Proc. Natl Acad. Sci. USA 99, 12923–12926.

    PubMed  CAS  Google Scholar 

  • Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., de Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Philips O.L., Williams S.C. (2004) Extinction risk from climate change, Nature 427, 577–280.

    Google Scholar 

  • Thompson J.N. (2005) The Geographic Mosaic of Coevolution, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Tilman D., Reich P.B., Knops J., Wedin D., Mielke T. (2001) Diversity and productivity in a long-term grassland experiment, Science 294, 843–845.

    PubMed  CAS  Google Scholar 

  • Tonhasca A., Blackmer J.L., Albuquerque G.S. (2002) Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest, Biotropica 34, 416–422.

    Google Scholar 

  • Tscharntke T., Brandl R. (2004) Plant-insect interactions in fragmented landscapes, Annu. Rev. Entomol. 49, 405–430.

    PubMed  CAS  Google Scholar 

  • Tscharntke T., Klein A.M., Kruess A., Steffan-Dewenter I., Thies C. (2005) Landscape perspectives on agricultural intensification and biodiversity — ecosystem service management, Ecol. Lett. 8, 857–874.

    Google Scholar 

  • Tylianakis J.M., Klein A.-M., Tscharntke T. (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient, Ecology 86, 3296–3302.

    Google Scholar 

  • Tylianakis J.M., Didham R.K., Bascompte J., Wardle D.A. (2008) Global change and species interactions in terrestrial ecosystems, Ecol. Lett. 11, 1351–1363.

    PubMed  Google Scholar 

  • Vandergast A.G., Gillespie R.G. (2004) Effects of natural forest fragmentation on a Hawaiian spider community, Environ. Entomol. 33, 1296–1305.

    Google Scholar 

  • Vulliamy B., Potts S.G., Willmer P.G. (2006) The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscape, Oikos 114, 529–543.

    Google Scholar 

  • Wagner A.C.W. (1938) Die Stechimmen und Goldwespen des westlichen Norddeutschland, Verh. Ver. Naturwiss. Heimatforsch. Hamburg 26, 94–153.

    Google Scholar 

  • Wcislo W.T. (1987) The roles of seasonality host synchrony and behavior in the evolutions and distributions of nest parasites in Hymenoptera (Insecta). With special reference to bees (Apoidea), Biol. Rev. (Camb.) 63, 515–544.

    Google Scholar 

  • Wcislo W.T., Cane J.H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies, Annu. Rev. Entomol. 41, 257–286.

    PubMed  CAS  Google Scholar 

  • Westbury D.B., Woodcock B.A., Harris S.J., Brown V.K., Potts S.G. (2008) The effect of seed mix and management on the abundance of desirable and pernicious unsown species in field margin communities, Weed Sci. 48, 113–123.

    Google Scholar 

  • Westphal C., Steffan-Dewenter I., Tscharntke T. (2003) Mass flowering crops enhance pollinator densities at a landscape scale, Ecol. Lett. 6, 961–965.

    Google Scholar 

  • Westphal C., Steffan-Dewenter I., Tscharntke T. (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees, J. Appl. Ecol. 46, 187–193.

    Google Scholar 

  • Westrich P. (1989) Die Wildbienen Baden-Württembergs, Stuttgart, Ulmer.

    Google Scholar 

  • Westrich P. (1996) Habitat requirements of central European bees and the problems of partial habitats, in: Matheson A., Buchmann S.L., Westrich P., Williams, I.H. (Eds.), The conservation of bees, Academic Press, London, pp. 1–16.

    Google Scholar 

  • Williams I.H., Corbet S.A., Osborne J.L. (1991) Beekeeping, wild bees and pollination in the European Community, Bee World 72, 170–180.

    Google Scholar 

  • Williams N.M. (2003) Use of novel pollen species by specialist and generalist solitary bees (Hymenoptera: Megachilidae), Oecologia 134, 228–237.

    PubMed  Google Scholar 

  • Williams N.M., Kremen C. (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape, Ecol. Appl. 17, 910–921.

    PubMed  Google Scholar 

  • Williams N.M., Minckley R.L., Silveiria F.A. (2001) Variation in native bee faunas and its implications for detecting community change, Conserv. Ecol. 5, http://www.consecol.org/vol5/iss1/art7/ (accessed on 16 February 2009).

  • Williams P.H. (1986) Bumble bees and their decline in Britain. Central Association of Beekeepers, UK.

    Google Scholar 

  • Williams P.H., Osborne J. (2009) Bumblebee vulnerability and conservation world-wide, Apidologie, 40, 367–387.

    Google Scholar 

  • Winfree R., Griswold T., Kremen C. (2007) Effect of human disturbance on bee communities in a forested ecosystem, Conserv. Biol. 21, 213–223.

    PubMed  Google Scholar 

  • Winfree R., Williams N.M., Gaines H., Ascher J.S., Kremen C. (2008) Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA, J. Appl. Ecol. 45, 793–802.

    Google Scholar 

  • Wülker W. (1964) Parasite-induced changes of internal and external sex characters in insects, Exp. Parasitol. 15, 561–597.

    Google Scholar 

  • Zammit J., Hogendoorn K., Schwarz M.P. (2008) Strong constraints to independent nesting in a facultatively social bee: quantifying the effects of enemies-at-the-nest, Insectes Soc. 55, 74–78.

    Google Scholar 

  • Zayed A. (2009) Bee genetics and conservation, Apidologie, 40, 237–262.

    Google Scholar 

  • Zayed A., Packer L., Grixti J.C., Ruz L., Owen R.E., Toro H. (2005) Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation, Conserv. Genet. 6, 1017–1026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás E. Murray.

Additional information

Manuscript editor: Robert Paxton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, T.E., Kuhlmann, M. & Potts, S.G. Conservation ecology of bees: populations, species and communities. Apidologie 40, 211–236 (2009). https://doi.org/10.1051/apido/2009015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009015

Navigation