Skip to main content
Log in

Pollution maps of grass contamination by platinum group elements and polycyclic aromatic hydrocarbons from road traffic

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The increase in deposition of air pollutants such as the platinum group elements (PGEs) Pt, Pd and Rh, and polycyclic aromatic hydrocarbons (PAHs) from vehicles on plants has raised concerns about the risk for the quality of food and, in turn, for human health. Here, we report the first pollution maps of PGEs and PAHs at the agricultural scale. PGEs have recently emerged in ecosystems due to their massive use as catalysts in the automobile industry. PAHs are combustion by-products known for their carcinogenic properties. PAHs and PGEs emitted by vehicles can enter the food chain through deposition on plants growing near roads. Despite many investigations of PAHs and PGEs, knowledge on their spatial distribution near roads is very scarce. Here, we assessed their localization on the scale of an agricultural field close to a road with 7200 vehicles per day. While classical studies usually involve direct measurements of plants growing in the field, we used an alternative experimental approach to allow an unambiguous assessment of the pollution impact. Ryegrass (Lolium perenne) was first cultivated in pots in a closed greenhouse to isolate the plants from the outdoor atmosphere. Then, ryegrass pots were transferred to the agricultural field. The spatial distribution of PGEs and PAHs was assessed by placing ryegrass pots 0 m, 10 m, 25 m and 50 m from the road. This method thus allowed the measurement of PGE and PAH deposit from vehicle emissions during a known timeframe. After a one-month exposure, the PGE and PAH concentrations in ryegrass samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and high-pressure liquid chromatography (HPLC), respectively. Our results demonstrate a significant effect of pollution by the outdoor atmosphere for Pd and PAHs. Indeed, the concentrations increased by a factor of 1.5 for Pd and by a factor of 7 for PAHs after one month’s exposure in the isolated pasture. The results also demonstrate clearly the impact of road traffic. Indeed, the highest PGE and PAH concentrations were detected in ryegrass exposed at the road site. Pd and PAH concentrations decreased significantly up to 39% and 60%, respectively, from 0 to 50 m away from the road. The pollution maps show that the maximum depositions occur precisely along the road plan. The highest pollution levels of grasses of 23 ng Pd/g grass and 260 ng PAHs/g grass dry weight were recorded between 0 and 10 m on both sides of the road. Pollution maps should thus help to assess more precisely the impact of road traffic on food quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbante C., Veysseyre A., Ferrari C., Van de Velde K., Morel C., Capodaglio G., Cescon P., Scarponi G., Boutron C. (2001) Greenland snow evidence of large scale atmospheric contamination for platinum, palladium and rhodium, Environ. Sci. Technol. 35, 835–839.

    Article  PubMed  CAS  Google Scholar 

  • Bencs L., Van Grieken R. (2004) Platinum group elements in the environment and their health risk, Sci. Total Environ. 318, 1–47.

    Article  PubMed  Google Scholar 

  • Bryselbout C., Henner P., Carsignol J., Lichtfouse E. (2000) Polycyclic aromatic hydrocarbons in highway plants and soils. Evidence for a local distallation effet, Analusis 28, 32–35.

    Article  Google Scholar 

  • Colvile R.N., Hutchinson E.J., Mindell J.S., Warren R.F. (2001) The transport sector as a source of air pollution, Atmos. Environ. 35, 1537–1565.

    Article  CAS  Google Scholar 

  • Crépineau-Ducoulombier C., Tankari D.A., Rychen G. (2004) PAH contamination of the grass perenne exposed to vehicular traffic, Agronomie 24, 503–506.

    Article  Google Scholar 

  • Crépineau C., Rychen G., Feidt C., Le Roux Y., Lichtfouse E., Laurent F. (2003) Contamination of pastures by polycyclic aromatic hydrocarbons (PAHs) in the vicinity of a highway, J. Agr. Food Chem. 51, 4841–4845.

    Article  Google Scholar 

  • Djingova R., Kovacheva P., Wagner G., Markert B. (2003) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany, Sci. Total Environ. 308, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Dugay A., Herrenknecht C., Czok M., Guyon F., Pages N. (2002) New procedure for selective extraction of polycyclic aromatic hydrocarbons in plants for gas Chromatographic — mass spectrometric analysis, J. Chromato. 958, 1–7.

    Article  CAS  Google Scholar 

  • Ely J.C., Neal C., Kulpa C., Schneegurt M., Scidler J., Jain J. (2001) Implications of platinum-group element accumulation along US roads from catalytic-converter attrition, Environ. Sci. Technol. 35, 3816–3822.

    Article  PubMed  CAS  Google Scholar 

  • Garrec J.P., Van Haluwyn C. (2002) Biosurveillance végétale de la qualité de l’air, Tec & Doc, Paris, 117 p.

    Google Scholar 

  • Gebel T., Lantzsch H., Plesow K., Dunkelberg K. (1997) Genotoxicity of platinum and palladium compounds in human and bacterial cells, Mutat. Res. 389, 183–190.

    PubMed  CAS  Google Scholar 

  • Henner P., Schiavon M., Druelle V., Lichtfouse E. (1999) Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination, Org. Geochem. 30, 963–969.

    Article  CAS  Google Scholar 

  • Kipopoulou A.M., Manoli E., Samara C. (1999) Bioconcentration of polycyclic hydrocarbons in vegetables grown in an industrial area, Environ. Poll. 106, 369–380.

    Article  CAS  Google Scholar 

  • Klumpp A., Ansel W., Klumpp G., Belluzzo N., Calatayud V., Chaplin N., Garrec J.P., Gutsche H.J., Hayes M., Hentze H.W., Kambezidis H., Laurent O., Penuelas J., Rasmussen S., Ribas A., Ro-Poulsen H., Rossi S., Sanz M.J., Shang H., Sifakis N., Vergne P. (2002) EuroBionet: A Pan — European Biomonitoring Network for Urban Air Quality Assessment, Environ. Sci. Pollut. R. 9, 199–203.

    Article  CAS  Google Scholar 

  • Mastral A.M., Lopez J.M., Callén M.S., Garcia T., Murrillo R., Navaro M. (2003) Spatial and temporal PAH concentrations in Zaragoza, Spain, Sci. Total Environ. 307, 111–124.

    Article  PubMed  CAS  Google Scholar 

  • Moldovan M., Rauch S., Gómez M., Palacios M.A., Morrison G.M. (2001) Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellu, Water Res. 35, 4175–4183.

    Article  PubMed  CAS  Google Scholar 

  • Moll N. (1995) Évaluations de la contamination des aliments et boissons par les hydrocarbures aromatiques et les amines hétérocycliques, in: Moll M., Moll N. (Eds.), Sécurité alimentaire du consommateur, Technique et Documentation Lavoisier, pp. 264–282.

  • Ravindra K., Bencs L., Van Grieken R. (2004) Platinum group elements in the environment and their health risk, Sci. Total Environ. 318, 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer J., Hannker D., Eckhardt J.D., Stuben D. (1998) Uptake of traffic-related heavy metals and platinum group elements (PGE) by plants, Sci Total Environ. 215, 59–67.

    Article  Google Scholar 

  • Schäfer J., Puchelt H. (1998) Platinum-Group-Metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils, J. Geochem. Explor. 64, 307–314.

    Article  Google Scholar 

  • Shabad L.M. (1980) Circulation of carcinogenic Polycyclic Aromatic Hydrocarbons in the human environment and cancer prevention, J. Natl. Cancer I. 64, 405–410.

    CAS  Google Scholar 

  • Tankari Dan-Badjo A., Crépineau C., Soligot C., Feidt C., Rychen G. (2007) Deposition of platinum group elements and polycyclic hydrocarbons on ryegrass exposed to vehicular traffic, Agron. Sustain. Dev. 27, 261–266.

    Article  Google Scholar 

  • Van der Velde K., Barbante C., Cozzi G., Moret I., Bellomi T., Ferrari C., Boutron C. (2000) Changes in the occurence of silver, gold, platinum, palladium, and rhodium in Mont Blanc ice and snow since the 18th century, Atmos. Environ. 34, 3117–3127.

    Article  Google Scholar 

  • Viskari E.L., Rekilä R., Roy S., Lehto O., Ruuskanen J., Kärenlampi L. (1997) Airborne pollutants along a roadside: assessment using snow analyses and moss bags, Environ. Pollut. 153–160.

  • Zechmeister H.G., Hagendorfer H., Hohenwallner D., Hanus-Illnar A., Riss A. (2006) Analyses of platinum group elements in mosses as indicators of road traffic emissions in Austria, Atmos. Environ. 40, 7720–7732.

    Article  CAS  Google Scholar 

  • Zereini F., Skerstupp B., Alt F., Helmers E., Urban H. (2007) Geochemical behaviour of platinum-group elements (PGE) in particulate emissions by automobile exhaust catalysts: experimental results and environmental investigations, Total Environ. 7, 37–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile Ducoulombier.

About this article

Cite this article

Tankari Dan-Badjo, A., Rychen, G. & Ducoulombier, C. Pollution maps of grass contamination by platinum group elements and polycyclic aromatic hydrocarbons from road traffic. Agron. Sustain. Dev. 28, 457–464 (2008). https://doi.org/10.1051/agro:2008032

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2008032

Navigation