Skip to main content
Log in

Peroxidase changes in Phoenix dactylifera palms inoculated with mycorrhizal and biocontrol fungi

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

In Morocco, yields of date palms are highly decreased by the pathogen fungi Fusarium oxysporum. To solve this issue, mycorrhizal fungi and biocontrol agents could enhance plant resistance to pathogens. Here, we studied peroxidases in roots and leaves of Phoenix dactylifera in response to inoculation with the fungi Glomus mosseae and Trichoderma harzianum. Date palm plants were harvested 57 weeks after inoculation with mycorrhizal fungi and biocontrol fungi. We measured the dry biomass, arbuscular colonization, cytochemistry of peroxidase, and peroxidase forms and activities in roots and leaves. Our results show that mycorrhization increased the plant dry biomass by about 57%. The rate of mycorrhizal colonization ranged from 25% to 30%. Peroxidase activity in roots colonized by T. harzianum alone was 1.6 times higher than in control plants. Peroxidase activity in roots colonized by G. mosseae and T. harzianum was about 2 times higher than in control plants. Peroxidase activity in leaves increased by + 419% when plants were inoculated by both fungi. The cytochemical results show an accumulation of structural substances in root cell walls after inoculation with T. harzianum. These structural substances may increase the mechanical strength of the host cell walls in order to inhibit pathogen invasion. Peroxidase activities were found in plant cell walls; the tonoplast and host plasmalemma in the chloroplast; mitochondrial membranes; and intercellular spaces of plants inoculated with G. mosseae and T. harzianum. SDS-PAGE analyses of leaf extracts gave a main band at 54 kDa for all the treatments. The stimulatory effect of Trichoderma on the peroxidase activity is a resistance mechanism of date plants to pathogens. The use of Trichoderma could thus be an alternative to chemicals in crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benhamou N., Chet I. (1996) Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: ultrastructural and cytochemical aspects of the interaction, Phytopathology 86, 405–416.

    Article  Google Scholar 

  • Bergey D.R., Howe G.A., Ryan C.A. (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals, Proc. Natl Acad. Sci. USA 93, 12053–12058.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding, Annal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  • Calvet C., Pera J., Barea J.M. (1989) Interactions of Trichoderma spp. with Glomus mosseae and two wilt pathogenic fungi, Agr. Ecosyst. Environ. 29, 59–65.

    Article  Google Scholar 

  • Datnoff L.E., Nemec S., Pernezny K. (1995) Biological control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices, Biol. Control 5, 427–431.

    Article  Google Scholar 

  • Dhillion S.S. (1994) Effect of Trichoderma harzianum, Beijerinckia mobilis and Aspergillus niger on arbuscular mycorrhizal infection and sporulation in maiza, wheat, millet, sorghum, barley and oats, J. Plant Dis. Prot. 101, 272–277.

    CAS  Google Scholar 

  • Dreyer B., Morte A., Honrubia M. (2001) Growth of mycorrhizal Phoenix canariensis plants under three different cultivation systems. Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Fourteenth International Plant Nutrition Colloquium, Hannover, Germany, pp. 648–649.

  • Goldberg R., Catesson A.M., Czaninski Y. (1983) Some properties of syringaldazine oxidase, a peroxidase specifically involved in the lignification processes, Z. Pflanzenphysiol. 110, 267–279.

    CAS  Google Scholar 

  • Green H., Larsen J., Olsson P.A., Jensen D.F., Jakobsen I. (1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil, Appl. Environ. Microb. 65, 1428–1434.

    CAS  Google Scholar 

  • Jaizme-Vega M.C., Díaz-Perez M.A. (1991) Effect of Glomus intraradices on Phoenix robelini during the nursery stage, Proc. 2nd Int. Symp. On Ornamental Palms and Other Monocots from the Tropics, Acta Horticulturae 486, ISHS.

  • Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lindermann R.G. (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect, Phytopathology 78, 366–371.

    Google Scholar 

  • Mäder M. (1992) Compartmentation of peroxidase isoenzymes in plant cells, in: Penel C., Gaspar T., Greppin H. (Eds.), Plant Peroxidases 1980–1990, University of Geneva, Switzerland, pp. 37–46.

    Google Scholar 

  • Mathur N., Vyas A. (1996) Biochimical changes in Ziziphus xylopyrus by VA mycorrhizae, Bot. Bull. Acad. Sinica 37, 209–212.

    CAS  Google Scholar 

  • Mc Allister C.B., García-Romera I., Godeas A., Ocampo J.A. (1994) Interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae: effects on plant growth, arbuscular mycorrhizas and the saprophyte inoculants, Soil Biochem. 26, 1363–1367.

    Article  Google Scholar 

  • Mc Arthur D.A., Knowles N.R. (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels, Plant Physiol. 100, 341–351.

    Article  CAS  Google Scholar 

  • Morte A., Honrubia M. (2002) Growth response of Phoenix canariensis to inoculation with arbuscular mycorrhizal fungi, Palms 46, 76–80.

    Google Scholar 

  • Münzenberger B., Otter T., Würstrich D., Polle A. (1997) Peroxidase and laccase activities in mycorrhizal and non-mycorrhizal fine roots of Norway spruce (Picea abies) and larch (Larix decidua), Can. J. Bot. 75, 932–938.

    Article  Google Scholar 

  • Oihabi A. (1991) Étude de l’influence des mycorhizes a vesicules et arbuscules sur le bayoud et la nutrition du palmier dattier, Doctoral Thesis, Université de Bourgogne, Dijon, France, pp. 39–45.

    Google Scholar 

  • Pedreño M.A., Bernai M.A., Calderon A.A., Ferrer M.A., Lopez-Serrano M., Merino de Smith S.E., Read D.J. (1997) Mycorrhizal Symbiosis, Academic Press, London, pp. 1–605.

    Google Scholar 

  • Pedreño M.A., Bernai M.A., Calderon A.A., Ferrer M.A., Lopez-Serrano M., Merino de Caceres F., Muñoz R., Ros Barcelo A. (1993) A general pattern for perxidase isoenzyme localization and function in vitaceae, solanaceae and leguminoseae, in: Welinder K.G., Rasmussen S.K., Penel C., Greppin H. (Eds.), Plant Peroxidases, Biochemistry and Physiology, Rochat-Baumann, Imprimerie Nationale, Geneva, pp. 307–314.

  • Pedreño M.A., Ferrer M.A., Gaspar T.H., Munoz R., Ros Barceló A. (1995) The polyfunctionality of cell wall peroxidases avoids the necessiry of an independent H2O2-generating system for phenolic coupling in the cell wall, Plant Perox. Newslett. 5, 3–8.

    Google Scholar 

  • Phillips J.M., Hayman D.S. (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Brit. Mycol. Soc. 55, 158–161.

    Article  Google Scholar 

  • Pozo M.J., Cordier C., Dumas-Gaudot E., Gianinazzi S., Barea J.M., Azcón-Aguilar C. (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants, J. Exp. Bot. 53, 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Sakharov I.Y., Castillo L.J., Areza J.C., Galaev I.Y. (2000) Purification and stability of peroxidase of African oil palm Elaies guineensis, Bioseparation 9, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Sakharov I.Y., Vesga M.K., Galaev I.Y., Sakharova I.V., Pletjushkina O.Y (2001) Peroxidase from leaves of royal palm tree Roystonea regia: purification and some properties, Plant Sci. 161, 853–860.

    Article  CAS  Google Scholar 

  • Salzer P., Hager A. (1993) Effect of auxins and ectomycorrhizal elicitors on wall-bound proteins and enzymes of spruce (Picea abies L. Karst), Trees 8, 49–55.

    Article  Google Scholar 

  • Siddiqui Z.A., Mohmood I. (1996) Biological control of Heterodera cajani and Fusarium udum on pigeonpea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium, Isr. J. Plant Sci. 44, 49–56.

    Google Scholar 

  • Smith S.E., Read D.J. (1997) Mycorrhizal symbiosis, Academic Press, London New York.

    Google Scholar 

  • Spanu P., Bonafante-Fasolo P. (1988) Cell wall bound peroxidase activity in roots of mycorrhizal Allium porrum, New Phytology 109, 119–124.

    Article  CAS  Google Scholar 

  • Takahama U., Oniki T. (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate, Plant Cell Physiol. 33, 379–387.

    CAS  Google Scholar 

  • Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle, in: Gianinazzi S. (Ed.), Les Mycorhizes: Physiologie et Génétique, 1er Séminaire Européen sur les Mycorhizes, Dijon, INRA, pp. 217–221.

    Google Scholar 

  • Viterbo A., Ramot O., Chemin L., Chet I. (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens, Anton. Leeuw. Int. J. G. 81, 549–556.

    Article  CAS  Google Scholar 

  • Yedidia I.I., Benhamou N., Chet I.I. (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum, Appl. Environ. Microb. 65, 1061–1070.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laaziza Ben Khaled.

About this article

Cite this article

Ben Khaled, L., Pérez-Gilabert, M., Dreyer, B. et al. Peroxidase changes in Phoenix dactylifera palms inoculated with mycorrhizal and biocontrol fungi. Agron. Sustain. Dev. 28, 411–418 (2008). https://doi.org/10.1051/agro:2008018

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2008018

Navigation