Skip to main content

Advertisement

Log in

Soil-erosion and runoff prevention by plant covers. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Soil erosion is a critical environmental problem throughout the world’s terrestrial ecosystems. Erosion inflicts multiple, serious damages in managed ecosystems such as crops, pastures, or forests as well as in natural ecosystems. In particular, erosion reduces the water-holding capacity because of rapid water runoff, and reduces soil organic matter. As a result, nutrients and valuable soil biota are transported. At the same time, species diversity of plants, animals, and microbes is significantly reduced. One of the most effective measures for erosion control and regeneration the degraded former soil is the establishment of plant covers. Indeed, achieving future of safe environment depends on conserving soil, water, energy, and biological resources. Soil erosion can be controlled through a process of assessment at regional scales for the development and restoration of the plant cover, and the introduction of conservation measures in the areas at greatest risk. Thus, conservation of these vital resources needs to receive high priority to ensure the effective protection of managed and natural ecosystems. This review article highlights three majors topics: (1) the impact of erosion of soil productivity with particular focus on climate and soil erosion; soil seal and crust development; and C losses from soils; (2) land use and soil erosion with particular focus on soil loss in agricutural lands; shrub and forest lands; and the impact of erosion in the Mediterranean terraced lands; and (3) the impact of plant covers on soil erosion with particular focus on Mediterranean factors affecting vegetation; plant roots and erosion control; and plant cover and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Zreig M., Rudra R.P., Lalonde M.N., Whiteley H.R., Kaushik N.K. (2004) Experimental investigation of runoff reduction and sediment removal by vegetated filter strips, Hydrol. Process. 18, 2029–2037.

    Article  Google Scholar 

  • Abu Hammad H.A., Borresen T., Haugen L.E. (2006) Effect of rain characteristics and terracing on runoff and erosion under the Mediterranean, Soil Till. Res. 87, 39–47.

    Article  Google Scholar 

  • Albadalejo J., Stocking M.A. (1989) Comparative evaluation of two models in predicting storm soil loss from erosion plots in semiarid Spain, Catena 16, 227–236.

    Article  Google Scholar 

  • Amezketa E. (1999) Soil aggregate stability: a review, J. Sustain. Agr. 14, 83–151.

    Article  Google Scholar 

  • Anderson J.M. (1978) Inter- and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats, Oecologia 32, 341–348.

    Article  Google Scholar 

  • Anderson M.G., Richards K.S. (1987) Slope stability; geotechnical engineering and geomorphology, Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Archer N., Hess T., Quinton J. (2002) The water balance of two semi-arid shrubs on abandoned land in South-Eastern Spain after cold season rainfall, Hydrol. Earth Syst. Sc. 6, 913–926.

    Article  Google Scholar 

  • Assouline S. (2004) Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions, Vadose Zone J. 3, 570–591.

    Google Scholar 

  • Atlavinyte O. (1964) Distribution of earthworms (Lumbricidae) and larval insects in the eroded soil under cultivated crops, Pedobiologia 4, 245–250.

    Google Scholar 

  • Bajracharya R.M., Lal R., Kimble J.M. (1998) Soil organic carbon dynamics under simulated rainfall as related to erosion and management in central Ohio, in: Blume H.P. (Ed.), Towards a sustain-ableland use, Advances in Geoecology 31, Vol. 1, Catena-Verlag, Germany, pp. 231–238.

    Google Scholar 

  • Barrows H.L., Kilmer V.J. (1963) Plant nutrient losses from soils by water erosion, Adv. Agron. 15, 303–315.

    Article  Google Scholar 

  • Bazivilinch N.I., Robin L.Y., Rozon N.N. (1971) Geomorphological aspects of productivity, Sov. Geogr. 12, 293–317.

    Google Scholar 

  • Bellot J., Escarré A. (1998) Stemflow and throughfall determination in a resprouted Mediterranean holm-oak forest, and changes by precipitation trends, Ann. Sci. For. 55, 847–865.

    Article  Google Scholar 

  • Bellot J., Bonet A., Sanchez J.R., Chirino E. (2001) Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model, Landscape Urban. Plan. 55, 41–53.

    Article  Google Scholar 

  • Blondel J., Aronson J. (1999) Biology and wildlife of the Mediterranean region, Oxford University Press, Oxford UK.

    Google Scholar 

  • Bochet E., Rubio J.L., Poesen J. (1998) Relative efficiency of three representative matorral species in reducing water erosion at the microscale in a semi-arid climate, Geomorphology 23, 139–150.

    Article  Google Scholar 

  • Bochet E., Poesen J., Rubio J. (2000) Mound development as an interaction of individual plants with soil, water erosion and sedimentation processes on slopes, Earth Surf. Proce. Land. 25, 847–867.

    Article  Google Scholar 

  • Bochet E., Poesen J., Rubio J.L. (2006) Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: influence of plant morphology and rainfall intensity, Earth Surf. Proc. Land. 31, 536–549.

    Article  Google Scholar 

  • Brandt J., Thornes J. (1987) Erosional energetics, in: Gregory K.L. (Ed.), Energetics of Physical Environment, pp. 51–87.

  • Branson F.A., Owen J.B. (1970) Plant cover, runoff, and sediment yield relationships on Mancos shale in Western Colorado, Water Resour. Res. 6, 184–790.

    Article  Google Scholar 

  • Bradford J.M., Ferris J.E., Remley P.A. (1987) Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment, Soil Sci. Soc. Am. J. 51, 1566–1571.

    Article  Google Scholar 

  • Brindle F.A. (2003) Use of native vegetation and biostimulants for controlling soil erosion on steep terrain, Journal of the Transportation Research Board, Eighth International Conference on Low Volume Roads, vol. 1, pp. 203–209.

  • Bruijnzeel L.A. (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agr. Ecosyst. Environ. 104, 185–228.

    Article  Google Scholar 

  • Bui E.N., Box J.E. (1993) Growing corn root effects on interrill soil erosion, Soil Sci. Soc. Am. J. 57, 1066–1070.

    Article  Google Scholar 

  • Calvo C.A., Boix-Fayos C., Imeson A.C. (2003) Runoff generation, sediment movements and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain, Geomorphology 50, 269–291.

    Article  Google Scholar 

  • Cammeraat L.H., Imeson A.C. (1999) The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain, Catena 37, 107–127.

    Article  Google Scholar 

  • Castillo V.M., Martínez-Mena M., Albaladejo J. (1997) Runoff and soil loss response to vegetation removal in a semiarid environment, Soil Sci. Soc. Am. J. 61, 1116–1121.

    Article  CAS  Google Scholar 

  • Chaney K., Swift R.S. (1984) The influence of organic matter on aggregate stability in some British soils, J. Soil Sci. 35, 223–230.

    Article  CAS  Google Scholar 

  • Chirino E., Bonet A., Bellot J., Sánchez J.R. (2006) Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain, Catena 65, 19–29.

    Article  Google Scholar 

  • Collins H.P., Elliott E.T., Paustian K., Bundy L.C., Dick W.A., Huggins D.R. (2000) Soil carbon pools and fluxes in long-term corn belt agroecosystems, Soil Biol. Biochem. 32, 157–168.

    Article  CAS  Google Scholar 

  • Dadkhah M., Gifford G.F. (1980) Influence of vegetation, rock cover and trampling on infiltration rates and sediment production, Water Res. Bull. 16, 979–986.

    Google Scholar 

  • de Baets S., Poesen J., Gyssels G., Knapen A. (2006) Effects of grass roots on the erodibility of topsoils during concentrated flow, Geomorphology 76, 54–67.

    Article  Google Scholar 

  • de Baets S., Poesen J., Knapen A., Barbera G.G., Navarro J.A. (2007a) Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff, Plant Soil 294, 169–183.

    Article  CAS  Google Scholar 

  • de Baets S., Poesen J., Knapen A., Galindo P. (2007b) Impact of root architecture on the erosion-reducing potential of roots during concentrated flow, Earth Surf. Proc. Land. 32, 1323–1345.

    Article  Google Scholar 

  • de Luis M. (2000) Estudio espacial y temporal de las tendencias de lluvia en la Comunidad Valenciana (1961–1990), Geoforma, Logroño.

  • de Ploey J., Savat J., Moeyersons J. (1976) Differential impact of some soil loss factors on flow, runoff creep and rainwash, Earth Surf. Proc. 1, 151–161.

    Article  Google Scholar 

  • Descroix L., Viramontes D., Vauclin M., Gonzalez Barrios J.L., Esteves M. (2001) Influence of soil surface features and vegetation on runoff and erosion in the Western Sierra Madre (Durango, Northwest Mexico), Catena 43.

  • di Castri F. (1981) Mediterranean-type shrublands of the world, in: di Castri F., Goodall D.W., Specht R.L. (Eds.), Ecosystems of the world 11: Mediterranean-type shrublands, Elsevier, Amsterdam, The Netherlands, pp. 1–52,115-135.

    Google Scholar 

  • Díaz E., Roldán A., Lax A., Albaladejo J. (1994) Formation of stable aggregates in degraded soils byamendment with urban refuse and peat, Geoderma 63, 277–288.

    Article  Google Scholar 

  • Diekkruger B., Bork H.R. (1994) Temporal variability of soil surface crust conductivity, Soil Tech. 7, 1–18.

    Article  Google Scholar 

  • Dissmeyer G.E., Foster G.R. (1985) Modifying the universal soil loss equation for forest land, in: El-Swaify S.A., Moldenhauer W.C., Lo A. (Eds.), Soil and Erosion Conservation, Soil Conservation Society of America: Ankeny, USA, pp. 480–495.

    Google Scholar 

  • Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C., Wisniewski J. (1994) Carbon pools and flux of forest global ecosystems, Science 263, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Dunne T., Dietrich W.E., Brunengo M.J. (1978) Recent and past erosion rates in semi-arid Kenya, Z. Geomorphol. Supplement Band 29, 130–140.

    Google Scholar 

  • Durán Z.V.H., Martínez R.A., Aguilar R.J. (2002) Control de la erosión en los taludes de bancales en terrenos con fuertes pendientes, Edafología 9, 1–10.

    Google Scholar 

  • Durán Z.V.H., Martínez R.A., Aguilar R.J. Franco T.D. (2003) El cultivo del mango (Mangifera indica L.) en la costa granadina, Granada, Spain.

  • Durán Z.V.H., Francia M.J.R., Martínez R.A. (2004a) Impact of vegetative cover on runoff and soil erosion at hillslope scale in Lanjarón, The Environmentalist 24, 39–48.

    Article  Google Scholar 

  • Durán Z.V.H., Martínez R.A., Aguilar R.J. (2004b) Nutrient losses by runoff and sediment from the taluses of orchard terraces, Water Air Soil Poll. 153, 355–373.

    Article  Google Scholar 

  • Durán Z.V.H., Aguilar R.J., Martínez R.A., Franco D.T. (2005) Impact of erosion in the taluses of subtropical orchard terraces, Agr. Ecosyst. Environ. 107, 199–210.

    Article  Google Scholar 

  • Durán Z.V.H., Francia M.J.R., Rodríguez P.C.R., Martínez R.A., Cárceles R.B. (2006a) Soil erosion and runoff prevention by plant covers in a mountainous area (SE Spain): implications for sustainable agriculture, The Environmentalist 26, 309–319.

    Article  Google Scholar 

  • Durán Z.V.H., Rodríguez P.C.R., Franco T.D., Martín P.F.J. (2006b) El cultivo del chirimoyo (Annona cherimola Mill.), Granada, Spain.

  • Durán Z.V.H., Rodríguez P.C.R., Francia M.J.R., Cárceles R.B., Martínez R.A., Pérez G.P. (2007) Harvest intensity of aromatic shrubs vs. soil-erosion: an equilibrium for sustainable agriculture (SE Spain), Catena (in press) available on line at: www.sciencedirect.com.

  • EEA (2001) European Environmental Agency, available on line at http://www.eea.europa.eu/.

  • Elwell H.A. (1980) Design of safe rotational systems, Department of conservation and Extension, Harare, Zimbabwe, 50 pp.

    Google Scholar 

  • Elwell H.A., Stocking M.A. (1974) Rainfall parameters and a cover model to predict runoff and soil loss from grazing trials in the Rhodesian sandveld, Proc. Grassland Soc. South Africa 9, 157–164.

    Google Scholar 

  • Elwell H.A., Stocking M.A. (1976) Vegetal cover to estimate soil erosion hazard in Rhodesia, Geoderma 15, 61–70.

    Article  Google Scholar 

  • Faeth P., Crosson P. (1994) Building the case for sustainable agriculture, Environment 36, 16–20.

    Google Scholar 

  • FAO (1998) Food Balance Sheet, available on line at: http://www.fao.org/es/ess/consweb.asp.

  • Faulkner H. (1990) Vegetation cover density variations and infiltration patterns on piped alkali sodic soils: Implications for the modelling of overland flow in semi-arid areas, in: Thornes J.B. (Ed.), Vegetation and Erosion, Processes and Environments, Wiley, Chichester, UK, pp. 317–346.

    Google Scholar 

  • Flanagan D.C., Nearing M.A. (1995) USDA-Water Erosion Prediction Project (WEPP), hillslope profile and watershed model documentation, West Lafayette, in: US Department of Agriculture-Agricultural Research Service, National Soil Erosion Research Laboratory Report 10.

  • Fox D.M., Bissonnais Y.L. (1998) Process-based analysis of aggregate stability effects on sealing, infiltration, and interrill erosion, Soil Sci. Soc. Am. J. 62, 717–724.

    Article  CAS  Google Scholar 

  • Fox D.M., Bryan R.B., Fox C.A. (2004) Changes in pore characteristics with depth for structural crusts, Geoderma 120, 109–120.

    Article  Google Scholar 

  • Francia J.R., Durán Z.V.H., Martínez R.A. (2006) Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain), Sci. Total. Environ. 358, 46–60.

    Article  CAS  Google Scholar 

  • Francis C.F., Thornes J.B. (1990) Runoff hydrographs from three Mediterranean vegetation cover types, in: Thornes J.B. (Ed.), Vegetation and Erosion, Processes and Environments, Wiley, Chichester, UK, pp. 363–384.

    Google Scholar 

  • Garcia R.J.M., Lasanta T., Marti C., Gonzáles C., White S., Ortigosa L., Ruiz F.P. (1995) Changes in runoff and erosion as a consequence of land-use changes in the central Spanish Pyrenees, Phys. Chem. Earth 20, 301–307.

    Article  Google Scholar 

  • Ghidey F., Alberts E.E. (1997) Plant root effects on soil erodibility, splash detachment, soil strength and aggregate stability, Trans. Am. Soc. Agr. Eng. 40, 129–135.

    Google Scholar 

  • Glinski J., Lipiec J. (1990) Soil physical conditions and plant roots, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Gobin A., Govers G., Jones R., Kirkby M., Kosmas C. (2003) Assessment and reporting on soil erosion European Environment Agency, Technical Report 94, Copenhagen, Denmark, 103 p.

  • González H.J.C., de Luis M., Raventós J., Cortina J., Sánchez J.R. (2004) Hydrological response of Mediterranean gorse shrubland under extreme rainfall simulation event, Z. Geomorphol. 48, 293–304.

    Google Scholar 

  • Govers G., Everaert W., Poesen J., Rauws G., De Ploey J., Latridou J.P. (1990) A long flume study of the dynamic factors affecting the resistance of a loamy soil to concentrated flow erosion, Earth Surf. Proc. Land. 11, 515–524.

    Article  Google Scholar 

  • Gray D.H., Leiser A.T. (1982) Biotechnical Slope Protection and Erosion Control, Van Nostrand Reinhold Company, New York, USA.

    Google Scholar 

  • Gray D.H., Sotir R.B. (1996) Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control, John Wiley and Sons, Toronto, Canada.

    Google Scholar 

  • Greene R.S.B., Cartres C.J., Hodgkinson K.C. (1990) The effects of fire on the soils in a degraded semiarid woodland. I: Cryptogram cover and physical and micromorphological properties, Aust. J. Soil Res. 28, 755–777.

    Article  Google Scholar 

  • Greene R.S.B., Kinneil P.I.A., Wood J.T. (1994) Role of plant cover and stock trampling on runoff and soil erosion from semi-arid wooded rangelands, Aust. J. Soil Res. 32, 953–973.

    Article  Google Scholar 

  • Gregorich E.G., Greer K.J., Anderson D.W., Liang B.C. (1998) Carbon distribution and losses: erosion and depositional effects, Soil Till. Res. 47, 291–302.

    Article  Google Scholar 

  • Gutierrez J., Hernandez I.I. (1996) Runoff and interrill erosion as affected by grass cover in a semi-arid rangeland of northern Mexico, J. Arid Environ. 34, 287–295.

    Article  Google Scholar 

  • Grove A.T., Rackham O. (2001) The nature of Mediterranean Europe: an ecological history, Yale University Press, London, UK.

    Google Scholar 

  • Gyssels G., Poesen J. (2003) The importance of plant root characteristics in controlling concentrated flow erosion rates, Earth Surf. Proc. Land. 28, 371–384.

    Article  Google Scholar 

  • Gyssels G., Poesen J., Bochet E., Li Y. (2005) Impact of plant roots on the resistance of soils to erosion by water: a review, Prog. Phys. Geog. 2, 189–217.

    Article  Google Scholar 

  • Gyssels G., Poesen J., Liu G., Van Dessel W., Knapen A., de Baets S. (2006) Effects of cereal roots on detachment rates of single and double drilled topsoils during concentrated flow, Eur. J. Soil Sci. 57, 381–391.

    Article  Google Scholar 

  • Harden J.W., Trumbore S.E., Stocks B.J., Hirsch A., Gower S.T., O’Neill K.P. (2000) The role of fire in the boreal carbon budget, Global Change Biol. 6, 174–184.

    Article  Google Scholar 

  • Heywood V.H. (1995) Global biodiversity assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kaihura F.B.S., Kullaya I.K., Kilasara M., Aune J.B., Singh B.R., Lal R. (1999) Soil quality of accelerated erosion and management systems in three eco-regions of Tanzania, Soil Till. Res. 53, 59–70.

    Article  Google Scholar 

  • Kainz M. (1989) Runoff, erosion and sugar beet yields in conventional and mulched cultivation results of the 1988 experiment, Soil Technol. Series 1, 103–114.

    Google Scholar 

  • Kendall H.W., Pimentel D. (1994) Constraints on the expansion of the global food supply, Ambio 23, 198–205.

    Google Scholar 

  • Kitazawa Y., Kitazawa T. (1980) Influence of application of a fungicide, an insecticide, and compost upon soil biotic community, in: Sindal D.L. (Ed.), Soil Biology as Related to Land Use Practices, Office of Pesticide and Toxic Substances, Environmental Protection Agency, Washington DC, USA, pp. 94–99.

    Google Scholar 

  • Kort J., Collins M., Ditsch D. (1998) A review of soil erosion potential associated with biomass crops, Biomass Bioenerg. 14, 351–359.

    Article  Google Scholar 

  • Kosmas C., Danalatos N., Moustakas N., Tsatiris B., Kallianou C., Yassoglou N. (1993) The impacts of parent material and landscape position on drought and biomass production of wheat under semiarid conditions, Soil Technol. 6, 337–349.

    Article  Google Scholar 

  • Kosmas D., Danalatos N., Cammeraat L.H., Chabart M. (1997) The effect of land use on runoff and soil erosion rates under Mediterranean conditions, Catena 29, 45–59.

    Article  CAS  Google Scholar 

  • Kosmas C., Danalatos N.G., Gerontidis St. (2000) The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions, Catena 40, 3–17.

    Article  Google Scholar 

  • Koulouri M., Giourga C. (2006) Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands, Catena 69, 274–281.

    Article  Google Scholar 

  • Lasanta T., García R.J.M., Pérez R.C., Sancho M.C. (2000) Runoff and sediment yield in a semi-arid environment: the effect of land management after farmland abandonment, Catena 38, 265–278.

    Article  Google Scholar 

  • Lal R. (1990) Soil erosion and land degradation: the global risks, in: Lal R., Stewart B.A. (Eds.), Soil degradation, New York, USA, Springer-Verlag, pp. 129–172.

    Google Scholar 

  • Lang R.D. (1979) The effect of ground cover on surface runoff from experimental plots, J. Soil Conserv. Service New South Wales 35, 108–114.

    Google Scholar 

  • Lang R.D. (1990) The effect of ground cover on runoff and erosion plots at Scone, New South Wales, MSc Thesis, Macquarie University, Sydney, Australia.

    Google Scholar 

  • Langdale G.W., West L.T., Bruce R.R., Miller W.P., Thomas A.W. (1992) Restoration of eroded soil with conservation tillage, Soil Technol. 5, 81–90.

    Article  Google Scholar 

  • Lavee H., Imeson A.C., Sarah P. (1998) The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect, Land Degrad. Dev. 9, 407–422.

    Article  Google Scholar 

  • Le Houerou H.N. (1981) Impact of man and his animals on Mediterranean vegetation, in: di Castri F., Specht R.L. (Eds.), Ecosystems of the world: Mediterranean shrublands, Elsevier, Amsterdam, The Netherlands, pp. 479–521.

    Google Scholar 

  • Lee E., Foster R.C. (1991) Soil fauna and soil structure, Aust. J. Soil Res. 29, 745–776.

    Article  Google Scholar 

  • Lee K.H., Isenhart T.M., Schultz C., Mickelson S.K. (2000) Multispecies riparian buffers trap sediment and nutrients during rainfall simulations, J. Environ. Qual. 29, 1200–1205.

    Article  CAS  Google Scholar 

  • Liu S., Bliss N., Sundquist E., Huntington T.G. (2003) Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cy. 17, 1074.

    Article  CAS  Google Scholar 

  • Li Y., Zhu X., Tian J. (1991) Effectiveness of plant roots to increase the anti-scourability of soil on the Loess Plateau, Chinese Sci. Bull. 36, 2077–2082.

    Google Scholar 

  • Li Y., Xu X., Zhu X.M., Tian J.Y. (1992) Effectiveness of plant roots on increasing the soil permeability on the Loess Plateau, Chinese Sci. Bull. 37, 1735–1738.

    Google Scholar 

  • Li Y., Xu X., Zhu X.M. (1993) Effective model on the roots of Chinese pine plantation to improve the physical properties of soil in the Loess Plateau, Scientia Silvae Sinicae 29, 193–198.

    Google Scholar 

  • López B.F., Alias L.J., Martínez J., Romero M.A., Marín P. (1991) Escorrentía y pérdida de suelo en calcisol pétrico bajo ambiente mediterráneo semiárido, Cuatern. Geomorfol. 5, 7–89.

    Google Scholar 

  • Mamo M., Bubenzer G.D. (2001a) Detachment rate, soil erodibility and soil strength as influenced by living plant roots: Part II. Field study, Am. Soc. Agr. Eng. 44, 1175–1181.

    Google Scholar 

  • Mamo M., Bubenzer G.D. (2001b) Detachment rate, soil erodibility and soil strength as influenced by living plant roots: Part I. Laboratory study, Am. Soc. Agr. Eng. 44, 1167–1174.

    Google Scholar 

  • Mapa R.B. (1995) Effect of reforestation using Tectona grandis on infiltration and soil water retention, Forest Ecol. Manag. 77, 119–125.

    Article  Google Scholar 

  • Marchand H. (1990) Les Forêts Méditerranéennes, Enjeux et perspectives, Les fascicules du Plan Bleu, 2, Économica, Paris, France.

    Google Scholar 

  • Marqués M.J., Jiménez L., Pérez R.R., García O.S., Bienes R. (2005) Reducing water erosion in a gypsic soil by combined use of organic amendment and shrub revegetation, Land Degrad. Dev. 16, 339–350.

    Article  Google Scholar 

  • Marqués M.J., Bienes R., Jiménez L., Pérez R.R. (2007) Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots, Sci. Total Environ. 378, 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Marston R.B. (1952) General cover requirements for summer storm runoff control on Aspen sites in Northern Utah, J. Forest. 50, 303–307.

    Google Scholar 

  • Martínez R.A., Durán Z.V.H., Francia F.R. (2006) Soil erosion and runoff response to plant cover strips on semiarid slopes (SE Spain), Land Degrad. Dev. 17, 1–11.

    Article  Google Scholar 

  • Martínez-Casasnovas J.A., Ramos M.C., Ribes D.M. (2005) On site effects of concentrated flow erosion in vineyard fields: some economic implications, Catena 60, 129–146.

    Article  Google Scholar 

  • Martínez-Mena M., Rogel A.J., Castillo V., Alvadalejo J. (2002) Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid Mediterranean soil, Biogeochemistry 61, 309–321.

    Article  Google Scholar 

  • McDonald M.A., Healey J.R., Stevens P.A. (2002) The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica, Agr. Ecosyst. Environ. 92, 1–19.

    Article  Google Scholar 

  • McIntyre D.S. (1958) Permeability measurements of soil crusts formed by raindrop impact, Soil Sci. 85, 185–189.

    Article  Google Scholar 

  • Meyer L.D., Dabney S.M., Harmon W.C. (1995) Sediment-trapping effectiveness of stiff-grass hedges, Trans. Am. Soc. Agr. Eng. 38, 809–815.

    Google Scholar 

  • Mills A.J., Fey M.V. (2004) Effects of vegetation cover on the tendency of soil to crust in South Africa, Soil Use Manag. 20, 308–317.

    Article  Google Scholar 

  • Moore T.R., Thomas D.B., Barber R.G. (1979) The influence of grass cover on runoff and soil erosion from soils in the Machakos area, Kenya, Trop. Agr. 56, 339–344.

    Google Scholar 

  • Morgan R.P.C. (1992) Soil erosion in the northern countries of the European Community, EIW Workshop: Elaboration of a framework of a code of good agricultural practices, Brussels, Belgium.

  • Morgan R.P.C. (1996) Soil erosion and conservation, second edition, Harlow, UK, Longman.

    Google Scholar 

  • Morgan R.P.C., Rickson R.J. (1990) Issues on soil erosion in Europe: the need for a soil conservation policy, in: Boardman J., Foster I.D.L., Dearing J.A. (Eds.), Soil Erosion on Agricultural Land, John Wiley and Sons.

  • Morin J., Benyamini Y. (1977) Rainfall infiltration into bare soils, Water Resour. Res. 13, 813–817.

    Article  Google Scholar 

  • Narain P., Singh R.K., Sindhwal N.S., Joshie P. (1998) Water balance and water use efficiency of different land uses in western Himalayan valley region, Agr. Water Manage. 37, 225–240.

    Article  Google Scholar 

  • Naylor L.A., Viles H.A., Carter N.E.A. (2002) Biogeomorphology revisited: looking towards the future, Geomorphology 47, 3–14.

    Article  Google Scholar 

  • Nearing M.A., Jetten V., Baffaut C., Cerdan O., Couturier A., Hernández M., Le Bissonnais Y., Nichols M.H., Nunes J.P., Renschier C.S., Souchére V., van Oost K. (2005) Modeling response of soil erosion, runoff to changes in precipitation, cover, Catena 61, 131–154.

    Article  Google Scholar 

  • Nicolau J.M., Solé-Benet A., Puigdefábregas J., Gutiérrez L. (1996) Effects of soil and vegetation on runoff along a catena in semi-arid Spain, Geomorphology 14, 297–309.

    Article  Google Scholar 

  • Nunes J.P.C., Seixas J. (2003) Impacts of extreme rainfall events on hydrological soil erosion patterns; application to a Mediterranean watershed, World Res. Rev. 15, 336–351.

    Google Scholar 

  • Nunes J.P., Vieira G.N., Seixas J., Gonçalves P., Carvalhais N. (2005) Evaluating the MEFIDIS model for runoff, soil erosion prediction during rainfall events, Catena 61, 210–228.

    Article  Google Scholar 

  • Ojima D.S., Staffor-Smith M., Beardsley M. (1995) Factors affecting carbon storage in semiarid and arid ecosystems, in: Squires V.R. (Ed.), Combating global warning by combating land degradation, UNEP, Nairobi, Kenya, pp. 60–68.

    Google Scholar 

  • Oldeman L.R., Hakkeling R.T.A., Sombroek W.G. (1991) Glasod world map of the status of human-induced soil degradation (second revised edition), ISRIC, UNEP, Wageningen, The Netherlands.

    Google Scholar 

  • Osterkamp W.R., Friedman J.M. (2000) The disparity between extreme rainfall events, rare floods — with emphasis on the semi-arid American West, Hydrol. Process. 14, 2817–2829.

    Article  Google Scholar 

  • Pardini G., Gispert M., Dunjó G. (2003) Runoff erosion and nutrient depletion in five Mediterranean soils of NE Spain under different land use, Sci. Total. Environ. 309, 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Packer P.E. (1951) An approach to watershed protection criteria, J. Forest. 49, 639–644.

    Google Scholar 

  • Pickett S.T.A., Cadenasso M.L., Bartha S. (2001) Implications from the Buell-Small Succession Study for vegetation restoration, Appl. Veg. Sci. 4, 41–52.

    Article  Google Scholar 

  • Pilgrim D.H., Chapman T.G., Doran D.G. (1988) Problems of rainfallrunoff modelling in arid and semiarid regions, Hydrolog. Sci. J. 33, 379–400.

    Article  Google Scholar 

  • Pimentel D., Kounang N. (1998) Ecology and soil erosion in ecosystems, Ecosystems 1, 416–426.

    Article  CAS  Google Scholar 

  • Pimentel D., Garnick E., Berkowitz A., Jacobson S., Napolitano S., Black P., Valdes C.S., Vinzant B., Hudes E., Littman S. (1980) Environmental quality and natural biota, Bioscience 30, 750–755.

    Article  Google Scholar 

  • Pimentel D., Stachow U., Takacs D.A., Brubaker H.W., Dumas A.R., Meaney J.J., O’Neil J., Onsi D.E., Corzilius D.B. (1992) Conserving biological diversity in agricultural/forestry systems, Bioscience 42, 354–362.

    Article  Google Scholar 

  • Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Sphpritz L., Fitton L., Saffouri R., Blair R. (1995) Environmental and economic costs of soil erosion and conservation benefits, Science 267, 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  • Pojasok T., Kay B.D. (1990) Effect of root exudates from corn and bromegrass on soil structural stability, Can. J. Soil Sci. 70, 351–362.

    Article  CAS  Google Scholar 

  • Prosser I.P., Dietrich W.E., Stevenson J. (1995) Flow resistance and sediment transport by concentrated overland flow in a grassland valley, Geomorphology 13, 71–86.

    Article  Google Scholar 

  • Puigdefábregas J., Sole A., Gutíerrez L., del Barrio G., Boer M. (1999) Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain, Earth Sci. Rev. 48, 39–70.

    Article  Google Scholar 

  • Puigdefábregas J. (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands, Earth Surf. Process. Landf. 30, 133–147.

    Article  Google Scholar 

  • Quinton J.N., Catt J.A., Wood G.A., Steer J. (2006) Soil carbon losses by water erosion: experimentation and modeling at field and national scales in the UK, Agr. Ecosyst. Environ. 112, 87–102.

    Article  Google Scholar 

  • Reid W.S. (1985) Regional effects of soil erosion on crop productivity: northeast, in: Follett R.F., Stewart B.A. (Eds.), Soil erosion and crop productivity, Madison, WI, USA, American Society of Agronomy, pp. 235–250.

    Google Scholar 

  • Reid B.J., Goss M.J. (1987) Effect of living roots of different plant species on the aggregate stability of two arable soils, J. Soil Sci. 32, 521–541.

    Google Scholar 

  • Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Washington, DC: US Department of Agriculture-Agricultural Research Service, Agriculture Handbook 703.

    Google Scholar 

  • Renschier C.S., Harbor J. (2002) Soil erosion assessment tools from point to regional scales—the role of geomorphologists in land management research, implementation, Geomorphology 47, 189–209.

    Article  Google Scholar 

  • Renschier C.S., Mannaerts C., Diekkrueger B. (1999) Evaluating spatial, temporal variability in soil erosion risk; rainfall erosivity, soil loss ratios in Andalusia, Spain, Catena 34, 209–225.

    Article  Google Scholar 

  • Reubens B., Poesen J., Danjon F., Geudens G., Muys B. (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review, Trees 21, 385–402.

    Article  Google Scholar 

  • Rey F. (2003) Influence of vegetation distribution on sediment yield in forested marly gullies, Catena 50, 549–562.

    Article  Google Scholar 

  • Rickson R.J., Morgan R.P.C. (1988) Approaches to modelling the effects of vegetation on soil erosion by water, in: Morgan R.P.C., Rickson R.J. (Eds.), Agriculture: erosion assessment and modelling, Office for Official Publications of the European Communities, Luxembourg.

  • Rodríguez P.C.R., Durán Z.V.H., Martín P.F.J., Franco T.D. (2007a) Erosion rates and carbon losses under different plant covers in the taluses of subtropical orchard terraces, in: Abad Chabbi (Ed.), International Symposium on Organic Matter Dynamics in Agro-Ecosystems, Poitiers, France, pp. 326–327.

    Google Scholar 

  • Rodríguez P.C.R., Durán Z.V.H., Martín P.F.J., Franco T.D. (2007b) Conservatión del suelo y de su biodiversidad bajo diferentes cubiertas en terrazas de cultivos subtropicales, in: Rodríguez R.A., Arbelo D.C. (Eds.), Control de la degradatión de suelos y la desertificatión, III Simposio National CDSD, Fuerteventura, Islas Canarias, Spain, pp. 413–414.

  • Roels J.M. (1985) Estimation of soil loss at a regional scale based on plot measurement. Some critical considerations, Earth Surf. Proc. Land. 10, 587–595.

    Article  Google Scholar 

  • Rogers R.D., Schumm S.A. (1991) The effect of sparse vegetative cover on erosion and sediment yield, J. Hydrol. 123, 19–24.

    Article  Google Scholar 

  • Romero D.M.A., López-Bermúdez F., Thornes J.B., Francis C.F., Fisher G.C. (1988) Variability of overland flow erosion rates in semiarid Mediterranean environment under matorral cover. Murcia Spain, in: Harvey A.M., Salas M. (Eds.), Geomorphic Systems, Catena Supplement, Vol. 13, pp. 1–11.

  • Romero D.M.A., Cammeraat L.H., Vacca A., Kosmas C. (1999) Soil erosion at three experimental sites in the Mediterranean, Earth Surf. Proc. Land. 24, 1243–1256.

    Article  Google Scholar 

  • Romero R., Guijarro J.A., Ramis C., Alonso S. (1998) A 30-year (1964–1993) daily rainfall data base for the Spanish Mediterranean regions: first exploratory study, Int. J. Climatol. 18, 541–560.

    Article  Google Scholar 

  • Roose E. (1988) Soil and water conservation lessons from steepslope farming in French speaking countries of Africa, in: Conservation farming on steep lands. Ankeny (IA): Soil and Water Conservation Society, pp. 130–131.

    Google Scholar 

  • Rostagno C.M., del Valle Puerto M.H.F. (1988) Mounds associated with shrubs in aridic soils of northeastern Patagonia: characteristics and probable genesis, Catena 15, 347–359.

    Article  Google Scholar 

  • Ryan C. (1995) Assessment of the factors contributing to the aggregate stability and the erodibility of tropical highland soils. Soil Fertility Conservation Project and Carleton University, Ottawa.

    Google Scholar 

  • Sakkar A.N., Jenkins D.A., Wyn Jones R.G. (1979) Modifications to mechanical and mineralogical composition of soil within the rhizo-sphere, in: Harley J.L., Russell R.S. (Eds.), The soil-plant interface, Academic Press, London, UK.

    Google Scholar 

  • Sala M., Calvo A. (1990) Response of four different Mediterranean vegetation types to runoff and erosion, in: Thornes J.B. (Ed.), Vegetation and Erosion, Wiley and Sons, Ltd., New York, USA, pp. 347–362.

    Google Scholar 

  • Sanchez G., Puigdefabregas J. (1994) Interactions of plant-growth and sediment movement on slopes in a semiarid environment, Geomorphology 9, 243–260.

    Article  Google Scholar 

  • Scharpenseel H.W., Pfeiffer E.M. (1998) Impacts of possible climate change upon soils; some regional consequences, in: Blume H.P. (Ed.), Towards a sustainable land use, Advances in Geoecology 31, Vol. 1, Catena-Verlag, Germany, pp. 193–208.

    Google Scholar 

  • Schenk H.J., Jackson R.B. (2002) The global biogeography of roots, Ecol. Monogr. 72, 311–328.

    Article  Google Scholar 

  • Schertz D.L., Moldenhauer W.C., Livingston S.J., Weesies G.A., Hintz E.A. (1989) Effect of past soil erosion on crop productivity in Indiana, J. Soil Water Conserv. 44, 604–608.

    Google Scholar 

  • Schlesinger W.H., Reynolds J.F., Cunningham G.L., Huenneke L.F., Jarrell W.M., Virginia R.A., Whitford W.G. (1990) Biological feedbacks in global desertification, Science 247, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Shainberg I. (1992) Chemical and mineralogical components of crusting, in: Sumner M.E., Stewart B.A. (Eds.), Soil Crusting: Chemical and Physical Processes, Lewis Publishers, Boca Raton, FL, USA, pp. 33–53.

    Google Scholar 

  • Sheridan G.J., So H.B., Loch R.J., Walker C.M. (2000) Estimation of erosion model erodibility parameters from media properties, Aus. J. Soil Res. 38, 256–284.

    Google Scholar 

  • Skiba U., Cresser M.S. (1991) Seasonal changes in soil atmospheric CO2 concentrations in two upland catchments and associated changes in river water chemistry, Chem. Ecol. 7, 217–225.

    Article  Google Scholar 

  • Smith P., Goulding K.W., Smith K.A., Powlson D.S., Smith J.U., Falloon P.D. (2001a) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential, Nutr. Cycl. Agroecosyst. 60, 237–252.

    Article  Google Scholar 

  • Smith S.V., Renwick W.H., Buddenmeier R.W., Crossland C.J. (2001b) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States, Glob. Biogeochem. Cycles 15, 697–707.

    Article  CAS  Google Scholar 

  • Snelder D.J., Bryan R.B. (1995) The use of rainfall simulation test to assess the influence of vegetation density on soil loss on degraded rangelands in the Baringo District, Kenya, Catena 25, 105–116.

    Article  Google Scholar 

  • Squires V. (1998) Dryland soils: their potential as a sink for carbon and as an agent in mitigating climate change, in: Blume H.P. (Ed.), Towards a sustainable land use, Advances in Geoecology 31, Vol. 1, Catena-Verlag, Germany, pp. 209–215.

    Google Scholar 

  • Sidorchuk A., Grigorev V. (1998) Soil erosion in the Yamal Peninsula (Russian Arctic) due to gas field exploitation, Adv. GeoEcology 31, 805–811.

    Google Scholar 

  • Simon A., Collison A. (2001) Scientific basis for streambank stabilization using riparian vegetation, Proceedings of the 7th Federal Interagency Sedimentation Conference, March 25–29, 2001, Reno, Nevada, USA.

  • Singer M.J., Shainberg I. (2004) Mineral soil surface crusts and wind and water erosion, Earth Surf. Proc. Land. 29, 1065–1075.

    Article  Google Scholar 

  • Sorriso V.M., Bryan R.B., Yair A., Iovino F., Antronico L. (1995) Impact of afforestation on hydrological response and sediment production in a small Calabrian catchment, Catena 25, 89–104.

    Article  Google Scholar 

  • Soto B., Díaz F.F. (1997) Runoff and soil erosion from areas of burnt scrub: comparison of experimental results with those predicted by the WEPP model, Catena 31, 257–270.

    Article  Google Scholar 

  • Stallard R.F. (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global. Biogeochem. Cy. 12, 231–257.

    Article  CAS  Google Scholar 

  • Soussana J.F., Loiseau P., Vuichard N., Ceschia E., Balesdent J., Chevallier T. (2004) Carbon cycling and sequestration opportunities in temperate grasslands, Soil Use Manag. 20, 19–23.

    Article  Google Scholar 

  • Stroosnijder L. (2005) Measurement of erosion: is it possible? Catena 64, 162–173.

    Article  Google Scholar 

  • Styczen M.E., Morgan R.P.C. (1995) Engineering properties of vegetation, in: Morgan R.P.C., Rickson R.J. (Eds.), Slope Stabilization and Erosion Control: A Bioengineering Approach, E. & F.N. Spon, London, UK, pp. 5–58.

    Google Scholar 

  • Tengbeh G.T. (1993) The effect of grass roots on shear strength variations with moisture content, Soil Tech. 6, 287–295.

    Article  Google Scholar 

  • Tisdall J.M., Oades J.M. (1982) Organic matter and water-stable aggregates in soils, J. Soil Sci. 33, 141–163.

    Article  CAS  Google Scholar 

  • Thirgood J.V. (1981) Man and the Mediterranean forest, Academic press, New York, USA.

    Google Scholar 

  • Trimble S.W. (1990) Geomorphic effects of vegetation cover and management: some time and space considerations in prediction of erosion and sediment yield, in: Thornes J.B. (Ed.), Vegetation and Erosion Processes and Environments, John Wiley and Sons.

  • Turkelboom F., Poesen J., Ohler I., van Keer K., Ongprasert S., Vlassak K. (1997) Assessment of tillage erosion rates on steep slopes in northern Thailand, Catena 29, 29–44.

    Article  CAS  Google Scholar 

  • USDA (2001) Agricultural Statistics, Washington, DC, USDA.

    Google Scholar 

  • Vacca A., Loddo S., Ollesch G., Puddu R., Serra G., Tomasi D., Aru A. (2000) Measurement of runoff and soil erosion in three areas under different land use in Sardinia (Italy), Catena 40, 69–92.

    Article  Google Scholar 

  • Van Oost K., Govers G., Quine T.A., Heckrath G., Olesen J.E., De Gryze S. (2005) Landscape-scale modeling of carbon cycling under the impact of soil redistribution: the role of tillage erosion, Global. Biogeochem. Cy. 19, GB4014 doi: 10.1029/2005GB002471.

  • Van Dijk P.M., Kwaad F.J.P.M., Klapwijk M. (1996) Retention of water and sediment by grass strips, Hydrol. Process. 10, 1069–1080.

    Article  Google Scholar 

  • Van Lynden G.W.J. (1995) European soil resources, Nature and Environment, No. 71. Council of Europe, Strasbourg.

  • Valentin C. (1991) Surface crusting in two alluvial soils of northern Niger, Geoderma 48, 210–222.

    Article  Google Scholar 

  • Valentin C., Bresson L.M. (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils, Geoderma 55, 225–245.

    Article  Google Scholar 

  • Wainwright J. (1996) Infiltration, runoff and erosion characteristics of agricultural land in extreme storm event, SE France, Catena 26, 27–47.

    Article  Google Scholar 

  • Wainwright J., Parsons A.J., Schlesinger W.H. (2002) Hydrology-vegetation interactions in areas of discontinuous flow on a semi-arid bajada, Southern New Mexico, J. Arid Environ. 51, 319–338.

    Article  Google Scholar 

  • Wen D., Pimentel D. (1998) Agriculture in China: water and energy resources, in: Tso T.C., Tuan F., Faust M. (Eds.), Agriculture in China 1949–2030, Beltsville, IDEALS Inc., pp. 479–497.

    Google Scholar 

  • West L.T., Chiang S.C., Norton L.D. (1992) The morphology of surface crusts, in: Sumner M.E., Stewart B.A. (Eds.), Soil Crusting: Chemical and Physical Processes. Lewis Publishers, Boca Raton, FL, USA. pp. 73–92.

    Google Scholar 

  • Whittaker R.H., Likens G.E. (1973) Primary production in the biosphere and man, Hum. Ecol. 1, 357–369.

    Article  Google Scholar 

  • Wilcox B., Wood K. (1988) Hydrologic impacts of sheep grazing on steep slopes in semiarid rangelands, J. Range Manage. 41, 303–306.

    Article  Google Scholar 

  • Wilcox B., Wood K. (1989) Factors influencing interrill erosion from semiarid slopes in New Mexico, J. Range Manage. 42, 66–70.

    Article  Google Scholar 

  • Wischmeier W.H. (1975) Estimating the soil loss equation’s cover and management factor for undisturbed areas, Proceedings of the Sediment-Yield Workshop, 1972, Oxford, MI, USA Department of Agriculture Research Service ARS-S-40, pp. 118–124.

    Google Scholar 

  • Wood M. (1989) Soil biology, Blackie, Chapman and Hall, New York.

    Google Scholar 

  • WRI (1997) World Resources Institute, New York, Oxford University Press.

    Google Scholar 

  • Wright D.H. (1990) Human impacts on energy flow through natural ecosystems, and replications for species endangerment, Ambio 19, 189–194.

    Google Scholar 

  • Yaalon D.H. (1990) Soils of a warmer earth, projecting the effects of increased CO2 and gaseous emissionon soils in Mediterranean and subtropical regions, in: Scharpenseel H.W. (Ed.), Soil on a Warmer Earth, Development in Soil Science 20, Elsevier, Amsterdam, The Netherlands, pp. 175–176.

    Google Scholar 

  • Young A. (1990) Agroforestry, environment and sustainability, Outlook Agr. 19, 155–160.

    Google Scholar 

  • Zanchi C. (1988) Soil loss, seasonal variation of erodibility in two soils with different texture in the Muguello valley in central Italy, Catena Supplement 12, 167–173.

    Google Scholar 

  • Zhang B., Yang Y., Zepp H. (2004) Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China, Catena 57, 77–90.

    Article  Google Scholar 

  • Zhou G.Y., Morris J.D., Yan J.H., Yu Z.Y., Peng S.L. (2002) Hydrological impacts of reafforestation with eucalypts and indigenous species: a case study in southern China, Forest Ecol. Manag. 167, 209–222.

    Article  Google Scholar 

  • Zhou Z., Shangguan Z. (2005) Soil anti-scourability enhanced by plant roots, J. Integrated Plant Biol. 47, 676–682.

    Article  Google Scholar 

  • Ziegler A.D., Giambelluca T.W. (1998) Influence of revegetation efforts on hydrologic response and erosion, Kaho’Olawe Island, Hawaii, Land Degrad. Dev. 9, 189–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Hugo Durán Zuazo.

About this article

Cite this article

Durán Zuazo, V.H., Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 28, 65–86 (2008). https://doi.org/10.1051/agro:2007062

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2007062

Navigation