Agronomy for Sustainable Development

, Volume 29, Issue 1, pp 43–62 | Cite as

Mixing plant species in cropping systems: concepts, tools and models. A review

  • E. MalézieuxEmail author
  • Y. Crozat
  • C. Dupraz
  • M. Laurans
  • D. Makowski
  • H. Ozier-Lafontaine
  • B. Rapidel
  • S. de Tourdonnet
  • M. Valantin-Morison
Open Access
Review Article


The evolution of natural ecosystems is controled by a high level of biodiversity, In sharp contrast, intensive agricultural systems involve monocultures associated with high input of chemical fertilisers and pesticides. Intensive agricultural systems have clearly negative impacts on soil and water quality and on biodiversity conservation. Alternatively, cropping systems based on carefully designed species mixtures reveal many potential advantages under various conditions, both in temperate and tropical agriculture. This article reviews those potential advantages by addressing the reasons for mixing plant species; the concepts and tools required for understanding and designing cropping systems with mixed species; and the ways of simulating multispecies cropping systems with models. Multispecies systems are diverse and may include annual and perennial crops on a gradient of complexity from 2 to n species. A literature survey shows potential advantages such as (1) higher overall productivity, (2) better control of pests and diseases, (3) enhanced ecological services and (4) greater economic profitability. Agronomic and ecological conceptual frameworks are examined for a clearer understanding of cropping systems, including the concepts of competition and facilitation, above- and belowground interactions and the types of biological interactions between species that enable better pest management in the system. After a review of existing models, future directions in modelling plant mixtures are proposed. We conclude on the need to enhance agricultural research on these multispecies systems, combining both agronomic and ecological concepts and tools.

species mixture plant mixture cropping system agroforestry system agrobiodiversity resource sharing crop model competition facilitation 


  1. Abrams P.A. (1995) Monotonic or unimodal diversity — productivity gradient: what does competition theory predict? Ecology 76, 2019–2027.CrossRefGoogle Scholar
  2. Adetiloye P.O., Adekunle A.A. (1989) Concept of monetary equivalent ratio and its usefulness in the evaluation of intercropping advantages, Trop. Agr. 66, 337–340.Google Scholar
  3. Adiku S.G.K., Rose C.W., Braddock R.D., Ozier-Lafontaine H. (2000) On the simulation of the root water extraction: Examination of a minimum energy hypothesis, Soil Sci. 165, 226–236.CrossRefGoogle Scholar
  4. Aerts R. (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks, J. Exp. Bot. 50, 29–37.CrossRefGoogle Scholar
  5. Altieri M.A. (1999) The ecological role of biodiversity in agroecosystems, Agr. Ecosyst. Environ. 74, 19–31.CrossRefGoogle Scholar
  6. Altieri M.A. (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments, Agr. Ecosyst. Environ. 93, 1–24.CrossRefGoogle Scholar
  7. Andow D.A. (1991) Yield loss to arthropods in vegetationally diverse ecosystems, Environ. Entomol. 20, 1228–1235.Google Scholar
  8. Andow D.A., Nicholson A.G., Wien H.C., Wilson H.R. (1986) Insect populations on cabbage grown with living mulches, Environ. Entomol. 15, 293–299.Google Scholar
  9. Anil L., Park J., Phipps R.H., Miller F.A. (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK, Grass Forage Sci. 53, 301–317.CrossRefGoogle Scholar
  10. Aubry C., Papy F., Capillon A. (1998) Modelling decision-making process for annual crop management, Agr. Syst. 56, 45–65.CrossRefGoogle Scholar
  11. Bartelink H.H. (2000) A growth model for mixed forest stands, Forest Ecol. Manag. 134, 29–43.CrossRefGoogle Scholar
  12. Berry D. (2001) Rational chemical control and cultural techniques, in: Marriaud D. (Ed.) Diseases of tropical tree crops, Montpellier, Cirad, pp. 152–192.Google Scholar
  13. Bertness B., Callaway R. (1994) Positive interactions in communities, Trends Ecol. Evol. 9, 191–193.PubMedCrossRefGoogle Scholar
  14. Bolliger A., Magid J., Amado J.C.T., Skora Neto F., Ribeir M., Calegari A., Ralisch R., de Neergaard A., Donald L.S. (2006) Taking Stock of the Brazilian “Zero Till Revolution”: A Review of Landmark Research and Farmers’ Practice, Adv. Agr. 91, 47–110.CrossRefGoogle Scholar
  15. Brisson N., Bussiere F., Ozier-Lafontaine H., Tournebize R., Sinoquet H. (2004) Adaptation of the crop model STICS to intercropping, Theoretical basis and parameterisation, Agronomie 24, 409–421.CrossRefGoogle Scholar
  16. Bruno J.F., Stachowicz J.J., Bertness M.D. (2003) Inclusion of facilitation into ecological theory, Trends Ecol. Evol. 18–3, 119–125.CrossRefGoogle Scholar
  17. Brussaard L., de Ruiter P.C., Brown G.G. (2007) Soil biodiversity for agricultural sustainability, Agr. Ecosyst. Environ. 121, 233–244.CrossRefGoogle Scholar
  18. Bulson H.A.J., Snaydon R.W., Stopes C.E. (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system, J. Agr. Sci. 128, 59–71.CrossRefGoogle Scholar
  19. Caldwell R.M. (1995) Simulation models for intercropping systems, in: Sinoquet H., Cruz P. (Eds.), Ecophysiology of Tropical Intercropping, INRA, Versailles, pp. 353–368.Google Scholar
  20. Caldwell M.M., Richards J.H. (1986) Competing root systems: morphology and models of absorption, in Givnish T. (Ed.), On the economy of plant form and function, Cambridge University Press, pp. 251–273.Google Scholar
  21. Caldwell R.M., Hansen J.W. (1993) Simulation of multiple cropping systems with CropSys, in: Penning de Vries F.W.T. (Ed.), Systems Approaches for Agricultural Development, pp. 397–412.Google Scholar
  22. Callaway R.M., Walker L.R. (1997) Competition and facilitation: a synthetic approach to interactions in plant communities, Ecology 78, 1958–1965.CrossRefGoogle Scholar
  23. Callaway R.M., Pennings S.C., Richards C.L. (2003) Phenotypic plasticity and interactions among plants, Ecology 84, 1115–1128.CrossRefGoogle Scholar
  24. Carberry P.S., Adiku S.G.K., McCown R.L., Keating B.A. (1996) Application of the APSIM cropping systems model to intercropping systems, in: Ito O., Johansen C., Adu-Gyamfi K., Katayama K., Kumar-Rao J.V.D.K., Rego T.J. (Eds.), Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics, Jap. Int. Res. Centre Agric. Sci., pp. 637–648.Google Scholar
  25. Coates K.D., Canham C.D., Beaudet M., Sachs D.L., Messier C. (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests, Forest Ecol. Manag. 186, 297–310.CrossRefGoogle Scholar
  26. Casper B.B., Jackson R.B. (1997) Plant competition underground, Annu. Rev. Ecol. Syst. 28, 545–570.CrossRefGoogle Scholar
  27. Clements F.E., Weaver J.E., Hanson H.C. (1926) Plant competition: an analysis of the development of vegetation, Carnegie Institute, Washington.Google Scholar
  28. Coates K.D., Canham C.D., Beaudet M., Sachs D.L., Messier C. (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests, Forest Ecol. Manag. 186, 297–310.CrossRefGoogle Scholar
  29. Coligny F.D., Ancelin P., Cornu G., Courbaud B., Dreyfus P., Goreaud F., Gourlet-Fleury S., Meredieu C., Saint-Andre L. (2003) CAPSIS: computer-aided projection for strategies in silviculture: advantages of a shared forest-modelling platform, in: Modelling forest systems. Workshop on the interface between reality, modelling and the parameter estimation processes, Sesimbra, Portugal, 2–5 June 2002, pp. 319–323.Google Scholar
  30. Corre-Hellou G. (2005) Acquisition de l’azote dans des associations poisorge (Pisum sativum L. — Hordeum vulgare L.) en relation avec le fonctionnement du peuplement. Thèse de doctorat en Sciences Agronomiques de l’École Doctorale d’Angers.Google Scholar
  31. Corre-Hellou G., Fustec J., Crozat Y. (2006) Interspecific competition for soil N and its interactions with N2 fixation, leaf expansion and crop growth in pea-barley intercrops, Plant Soil 282, 195–208.CrossRefGoogle Scholar
  32. Cruz P.A., Sinoquet H. (1994) Competition for light and nitrogen during a regrowth cycle in a tropical forage mixture, Field Crops. Res. 36, 21–30.CrossRefGoogle Scholar
  33. Dauzat J., Eroy M.N. (1997) Simulating light regime and intercrop yields in coconut based farming systems, Eur. J. Agron. 7, 63–74.CrossRefGoogle Scholar
  34. Deadman M.L., Soleimani M.J., Nkemka P.N. (1996) Cereal clover bicropping: effects on wheat stem-base and root diseases, Brighton crop protection conference.Google Scholar
  35. Deen W., Cousens R., Warringa J., Bastiaans L., Carberry P., Rebel K., Riha S., Murphy C., Benjamin L.R., Cloughley C. (2003) An evaluation of four crop: weed competition models using a common data set, Weed Res. 43, 116–129.CrossRefGoogle Scholar
  36. Dempster J.P., Coaker T.H. (1974) Diversification of crop ecosystems as a means of controlling pests, in: Jones D.P., Soloman M.E. (Eds.), Biology in pest and disease control. Wiley and Sons, New York, pp. 106–114.Google Scholar
  37. Donald C.M. (1958) The interaction of competition for light and for nutrients, Aust. J. Agr. Res. 9, 421–435.CrossRefGoogle Scholar
  38. Donald P. (2004) Biodiversity Impacts of Some Agricultural Commodity Production Systems, Conserv. Biol. 18, 17–38.CrossRefGoogle Scholar
  39. Doré T., Le Bail M., Martin P., Ney B., Roger-Estrade J. (2006) L’agronomie aujourd’hui, Éditions Quae, ISBN 2-7592-0000-0, 367 p.Google Scholar
  40. Doré T., Clermont-Dauphin C., Crozat Y, Jeuffroy M.H., Loyce C., Makowski D., Malézieux E., Meynard J.M., Valantin-Morison M. (2008) Methodological progress in on-farm regional agronomic diagnosis, Agron. Sustain. Dev. 28 Scholar
  41. Doyle C.J. (1997) A review of the use of models of weed control in Integrated Crop Protection, Agr. Ecosyst. Environ. 64, 165–172.CrossRefGoogle Scholar
  42. Dupraz C. (1998) Adequate design of control treatments in long term agroforestry experiments with multiple objectives, Agroforest. Syst. 43, 35–48.CrossRefGoogle Scholar
  43. Dupraz C., Vincent G., Lecomte I., Noordwijk M.V (in prep) Modelling 3D interactions of trees and crops with the Hi-sAFe model.Google Scholar
  44. Dury S., Temple L. (1999) La diversification fruitière des exploitations périurbaines dans la région de Yaoundé (Cameroun). Quelles conséquences pour l’orientation de la recherche-développement? in: Actes du Symposium international “Jardin Planétaire 99”, Savoie Technolac, Prospective 2100, Chambéry, France, pp. 531–535.Google Scholar
  45. Egunjobi O.A. (1984) Effects of intercropping maize with grain legumes and fertilizer treatments on populations of Protylenchus penetrans Godfrey (Nematoda) and on the yield of maize (Zea mays L.), Prot. Ecol. 6, 153–167.Google Scholar
  46. Eichhorn M., Paris P., Herzog F., Incoll L., Liagre F., Mantzanas K., Mayus M., Moreno G., Papanastasis V., Pilbeam D. (2006) Silvoarable Systems in Europe: Past, Present and Future Prospects, Agroforest. Syst. 67, 29–50.CrossRefGoogle Scholar
  47. Erskine P.D., Lamb D., Bristow M., (2006) Tree species diversity and ecosystem fonction: can tropical multi-species plantations generate greater productivity? Forest Ecol. Manag. 233, 205–210.CrossRefGoogle Scholar
  48. Ewel J.J. (1986) Designing agricultural ecosystems for the humid tropics, Ann. Rev. Ecol. Syst. 17, 245–271.CrossRefGoogle Scholar
  49. Ewel J.J. (1999) Natural systems as models for the design of sustainable systems of land use, Agroforest. Syst. 45, 1–21.CrossRefGoogle Scholar
  50. Ewel J.J., Bigelow S.W. (1996) Plant life-forms and tropical ecosystem functioning, Ecol. Stud. 122, 101–126.Google Scholar
  51. Follis M.B. (1993) Economic considerations, in: Nair P.K.R. (Ed.), Introduction to Agroforestry, Kluwer Academic Publishers, Dordrecht, pp. 385–411.Google Scholar
  52. Francis C.A. (1990) Potential of multiple cropping systems, in: Altieri M.A., Hecht S.B. (Eds.), Agroecology and small farm development, Boca Raton, Florida, CRC Press, pp. 137–150.Google Scholar
  53. Frank D.A., McNaughton S.J. (1991) Stability increases with diversity in plant communities: empirical evidence from the 1998 Yellowstone drought, Oikos 62, 360–362.CrossRefGoogle Scholar
  54. Garcia-Barrios L. (2003) Plant-plant interactions in tropical agriculture, in: Vandermeer J. (Ed.), Tropical Agroecosystems, CRC Press, pp. 11–58.Google Scholar
  55. Garcia-Barrios L., Ong C.K. (2004) Ecological interactions, management lessons and design tools in tropical agroforestry systems, Agroforest. Syst. 61/62, 221–236.CrossRefGoogle Scholar
  56. Giller K.E., Beare M.H., Lavelle P., Izac M.N., Swift M.J. (1997) Agricultural intensification, soil biodiversity and agroecosystem function, Appl. Soil Ecol. 6, 3–16.CrossRefGoogle Scholar
  57. Gliesmann S.R. (2001) Agroecosystem sustainability: developing practical strategies, CRC Press, Boca Raton, Florida, USA.Google Scholar
  58. Goldberg D.E., Barton A.M. (1992) Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants, Am. Nat. 139, 771–801.CrossRefGoogle Scholar
  59. Gooding M.J., Kasyanova E., Ruske R., Hauggaard-Nielsen H., Jensen E.S., Dahlmann C., Von Fragsten P., Dibet A., Corre-Hellou G., Crozat Y., Pristeri A., Romeo M., Monti M., Launay M. (2007) Intercropping with pulses to concentrate nitrogen and sulphur in wheat, J. Agr. Sci. 145, 469–479.CrossRefGoogle Scholar
  60. Gosse G., Varlet-Grancher C., Bonhomme R., Allirand J.M., Lemaire G. (1986) Production maximale de matière sèche et rayonnement solaire intercepté par un couvert végétal, Agronomie 6, 47–56.CrossRefGoogle Scholar
  61. Gourlet-Fleury S., Blanc L., Picard N., Sist P., Dick J., Nasi R., Swaine M.D., Forni E. (2005) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy, Ann. For. Sci. 62, 785–796.CrossRefGoogle Scholar
  62. Gregory P.J., Reddy M.S. (1982) Root growth in an intercrop of pear millet/groundnut, Field Crop. Res. 5, 241–252.CrossRefGoogle Scholar
  63. Griffon M. (1999) Développement durable et agriculture: la révolution doublement verte, Cah. Agric. 8, 259–267.Google Scholar
  64. Grime J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary strategy, Am. Nat. 111, 1169–1194.CrossRefGoogle Scholar
  65. Gurr G.M., Wratten S.D., Luna J.M. (2003) Multi-function agricultural biodiversity: pest management and other benefits, Basic Appl. Ecol. 4, 107–116.CrossRefGoogle Scholar
  66. Hauggaard-Nielsen H., Jensen E. (2005) Facilitative root interactions in intercrops, Plant Soil 274, 237–250.CrossRefGoogle Scholar
  67. Hauggaard-Nielsen H., Ambus P., Jensen E.S. (2001) Interspecific competition, N use ans interference with weeds in pea-barley intercropping, Field Crop. Res. 70, 101–109.CrossRefGoogle Scholar
  68. Hector A., Schmid B., Beierkuhnlein C. (1999) Plant diversity and productivity experiments in European grasslands, Science 286, 1123–1127.PubMedCrossRefGoogle Scholar
  69. Hiebsch C.K., McCollum R.E. (1987) Area X Time Equivalency Ratio: a method for evaluating the productivity of intercrops, Agron. J. 79, 15–22.CrossRefGoogle Scholar
  70. Hobbs R.J., Morton S.R. (1999) Moving from descriptive to predictive ecology, Agroforest. Syst. 45, 43–55.CrossRefGoogle Scholar
  71. House J.I., Archer S., Breshears D.D., Scholes R.J. (2003) Conundrums in mixed woody-herbaceous plant systems, J. Biogeogr. 30, 1763–1777.CrossRefGoogle Scholar
  72. Huxley P.A. (1983) Comments on agroforestry classifications with special reference to plant aspects, in: Huwley P.A. (Ed.), Plant research and agroforestry, ICRAF, Nairobi, pp. 161–172.Google Scholar
  73. Huth N.I., Carberry P.S., Poulton P.L., Brennan L.E., Keating B.A. (2003) A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM, Eur. J. Agron. 18, 171–185.CrossRefGoogle Scholar
  74. Jackson W. (2002) Natural systems agriculture: a truly radical alternative, Agr. Ecosyst. Environ. 88, 111–117.CrossRefGoogle Scholar
  75. Jing Quan Yu (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-chinese chive (Allium tuberosum) intercropping system, J. Chem. Ecol. 25, 11.Google Scholar
  76. Jones G.A., Sieving K.E. (2006) Intercropping sunflower in organic vegetables to augment bird predators of arthropods, Agr. Ecosyst. Environ. 6, 171–177.CrossRefGoogle Scholar
  77. Keating B.A., Carberry P.S. (1993) Resource capture and use in intercropping — Solar radiation, Field Crop. Res. 34, 273–301.CrossRefGoogle Scholar
  78. Keddy (1989) Competition, Chapman and Hall, New York.Google Scholar
  79. Kelty M.J. (2006) The role of species mixtures in plantation forestry, Forest Ecol. Manag. 233, 195–204.CrossRefGoogle Scholar
  80. Kinane J.S., Lyngkjær M. (2002) Effect of barley-legume intercrop on disease in an organic farming system, Annual report of the Danish research centre for organic farming.Google Scholar
  81. Kumar Anil, Solanki K.R., Singh R. (2000) Effect of Wheat as intercrop on incidence of powdery mildew of ber (Zizyphus mauritiana), FACTRR 4, 121–124.Google Scholar
  82. Lafolie F., Bruckler L., Ozier-Lafontaine H., Tournebize R., Mollier A. (1999) Modelling soil-root water transport and competition for single and mixed crops, Plant Soil 210, 127–143.CrossRefGoogle Scholar
  83. Lamanda N., Dauzat J., Jourdan C., Martin P., Malézieux E. (2007) Using 3D architectural models to assess light availability and root bulkiness in coconut agroforestry systems, Agroforest. Syst., DOI 10.1007/s10457-007-9068-3.Google Scholar
  84. Lichtfouse E. (1997) Heterogeneous turnover of molecular organic substances from crop soils as revealed by 13C labeling at natural abundance with Zea Mays, Naturwissenschaften 84, 22–23.CrossRefGoogle Scholar
  85. Liebman M., Altieri M.A. (1986) Insect, weed and plant disease management in multiple cropping systems, Editor, MacMillan Publ. Co., N.Y., 383 p.Google Scholar
  86. Liebman M., Dick E. (1993) Crop rotation and intercropping strategies for weed management, Ecol. Appl. 3, 92–122.CrossRefGoogle Scholar
  87. Lefroy E.C., Hobbs R.J., Connor M.H.O., Pate J.S. (1999) What can agriculture learn from natural ecosystems? Agroforest. Syst. 45, 425–438.CrossRefGoogle Scholar
  88. Lin C.H., McGraw M.L., George M.F., Garrett H.E. (2001) Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential, Agroforest. Syst. 53, 269–281.CrossRefGoogle Scholar
  89. Liu J., Ashton P.S. (1995) Individual-based simulation models for forest succession and management, Forest Ecol. Manag. 73, 157–175.CrossRefGoogle Scholar
  90. Loreau M., Hector A. (2001) Partitioning selection and complementarity on biodiversity experiments, Nature 412, 72–76.PubMedCrossRefGoogle Scholar
  91. Loreau M., Naem S., Inchausti P., Bengtsson J., Grime J.P., Hooper D.U., Huston M.A., Taffaelli D., Schmid B., Tilman D., Wardle D.A. (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges, Science 294, 804–808.PubMedCrossRefGoogle Scholar
  92. Lose S.J., Hilger T.H., Leihner D.E., Kroschel J. (2003) Cassava, maize and tree root development as affected by various agroforestry and cropping systems in Benin, West Africa, Agr. Ecosyst. Environ. 100, 137–151.CrossRefGoogle Scholar
  93. Loyce C., Rellier J.P., Meynard J.M. (2002) Management planning for winter wheat with multiple objectives: the BETHA system, Agr. Syst. 72, 9–31.CrossRefGoogle Scholar
  94. Main A.R. (1999) How much biodiversity is enough? Agroforest. Syst. 45, 23–41.CrossRefGoogle Scholar
  95. Malézieux E., Moustier P. (2005a) La diversification dans les agricultures du Sud: à la croisée de logiques d’environnement et de marché. I. Un contexte nouveau, Cah. Agr. 14, 277–281.Google Scholar
  96. Malézieux E., Moustier P. (2005b) La diversification dans les agricultures du Sud: à la croisée de logiques d’environnement et de marché. II. Niveaux d’organisation, méthodes d’analyse et outils de recherche, Cah. Agr. 14, 375–382.Google Scholar
  97. Malézieux E., Lamanda N., Laurans M., Deheuvels O., Tassin J., Gourlet-Fleury S. (2007) Plant Functional Types and Traits: their relevance to better understand functioning and properties of Agroforestry Systems, 2nd Symposium on multistrata agroforestry, CATIE, Costa Rica (in press).Google Scholar
  98. Manson D.G., Hanan J., Hunt M., Bristow M., Erskine P.D., Lamb D., Schmidt S. (2006) Modelling predicts positive and negative interactions between three Australian tropical tree species in monoculture and binary mixture, Forest Ecol. Manag. 233, 315–323.CrossRefGoogle Scholar
  99. Mead R., Willey R.W. (1980) The concept of “land equivalent ratio” and advantages in yields from intercropping, Exp. Agr. 16, 217–228.CrossRefGoogle Scholar
  100. Mobbs D.C., Cannell M.G.R., Crout N.M.J., Lawson G.J., Friend A.D., Arah J. (1998) Complementarity of light and water use in tropical agroforests I. Theoretical model outline, performance and sensitivity, Forest Ecol. Manag. 102, 259–274.CrossRefGoogle Scholar
  101. Monteith J.L. (1977) Climate and the efficiency of crop production in Britain, Philos. T. Roy. Soc. London, pp. 277–294.Google Scholar
  102. Muschler R.G. (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica, Agroforest. Syst. 85, 131–139.CrossRefGoogle Scholar
  103. Nair P.K.R. (1993) An introduction to agroforestry, Kluwer Academic publishers, UK, 499 p.Google Scholar
  104. Nickel J.L. (1973) Pest situations in changing agricultural systems — a review, Bull. Entomol. Soc. Am. 19, 136–142.Google Scholar
  105. Ogenga-Latigo M.W., Ampofo J.K.O., Balidawa C.W. (1992) Influence of maize row spacing on infestation and damage of intercropped beans by the bean aphid (Aphis fabae), Field Crop. Res. 30, 110–122.Google Scholar
  106. Ong C.K., Huxley P. (1996) Tree-crop interactions: a physiological approach, CAB International, Wallingford.Google Scholar
  107. Osty P.L., Lardon S., de Sainte-Marie C. (1998) Comment analyser les transformations de l’activité productrice des agriculteurs? Proposition à partir des systèmes techniques de production, in Brossier J., Dent B. (Eds.), Gestion des exploitations et des ressources rurales, Étud. Rech. Syst. Agraires Dev. 31, 397–413.Google Scholar
  108. Ozier-Lafontaine H., Vercambre G., Tournebize R. (1997) Radiation and transpiration partitioning in a maize-sorghum intercrop: A comparison of two models, Field Crop. Res. 49, 127–145.CrossRefGoogle Scholar
  109. Ozier-Lafontaine H., Lafolie F., Bruckler L., Tournebize R., Mollier A. (1998) Modeling competition for water in intercrops: Theory and comparison with field experiments, Plant Soil 204, 183–201.CrossRefGoogle Scholar
  110. Park S.E., Benjamin L.R., Watkinson A.R. (2002) Comparing biological productivity in cropping systems: a competition approach, J. Appl. Ecol. 39, 416–426.CrossRefGoogle Scholar
  111. Park S.E., Benjamin L.R., Watkinson A.R. (2003) The Theory and Application of Plant Competition Models: an Agronomic Perspective, Ann. Bot. 92, 741–748.PubMedCrossRefGoogle Scholar
  112. Perfecto I., Rice R.A., Green Berg, Van der Voort M.E. (1996) Shade coffee: a disappearing refuge for biodiversity, Bioscience 46, 598–608CrossRefGoogle Scholar
  113. Perfecto I., Mas A., Dietsch T., Vandermeer J. (2003) Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico, Biodivers. Conserv. 12, 1239–1252.CrossRefGoogle Scholar
  114. Perrin R.M. (1977) The role of environmental diversity in crop protection, Prot. Ecology 2, 77–114.Google Scholar
  115. Poggio S.L. (2005) Structure of weed communities occuring in monoculture and intercropping of field pea and barley, Agr. Ecosyst. Environ. 109, 48–58.CrossRefGoogle Scholar
  116. Price C. (1995) Economic evaluation of financial and non-financial costs and benefits in agroforestry development and the value of sustainability, Agroforest. Syst. 30, 75–86.CrossRefGoogle Scholar
  117. Price G.R. (1970) Selection and covariance, Nature 227, 520–521.PubMedCrossRefGoogle Scholar
  118. Price G.R. (1995) The nature of selection, J. Theor. Biol. 175, 389–396.PubMedCrossRefGoogle Scholar
  119. Prusinkiewicz P. (2004) Modelling plant growth and development, Curr. Opin. Plant Biol. 7, 79–83.PubMedCrossRefGoogle Scholar
  120. Ramirez O.A., Somarriba E., Ludewigs T., Ferreira P. (2001) Financial returns, stability and risk of cacao-plantain-timber agroforestry systems in Central America, Agroforest. Syst. 51, 141–154.CrossRefGoogle Scholar
  121. Ranganathan R. (1992) Production possibility frontiers and estimation of competition effects: the use of a priori information on biological processes in intercropping, Exp. Agr. 28, 351–367.CrossRefGoogle Scholar
  122. Rajvanshi I., Mathur B.N., Sharma G.L. (2002) Effect of intercropping on incidence of Heterodera avenae in wheat and barley crops, Annu. Plant Protection Sci. 10, 365–410.Google Scholar
  123. Rodriguez-Cabana R., Kloepper J.W. (1998) Cropping systems and the enhancement of microbial activities antagonistic to nematodes, Nematropica 28, 144.Google Scholar
  124. Rossing W.A.H., Jansma E.J., de Ruijter F.J., Schans J. (1997) Operationalizing sustainability: exploring options for environmentally friendly flower buble production systems, Eur. J. Plant Pathol. 103, 217–234.CrossRefGoogle Scholar
  125. Root R.B. (1973) Organization of a plant-arthropod association in simple and diverse habitats — fauna of collards (Brassica oleracea), Ecol. Monogr. 43, 95–120.CrossRefGoogle Scholar
  126. Sain G., Ponce I., Borbon E. (1994) Profitability of the Abonera system practiced by farmers on the Atlantic Coast of Honduras, in: Thurston H.D., Smith M., Abawi G., Kearl S. (Eds.), TAPADO Slash/mulch: how farmers use it and what researchers know about it, CATIE and CIIFAD, Ithaca, New York, pp. 273–282.Google Scholar
  127. Scopel E., Da Silva F.A.M., Corbeels M., Affholder F., Maraux F. (2004) Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions, Agronomie 24, 383–395.CrossRefGoogle Scholar
  128. Scopel E., Findeling A., Chavez Guerra E., Corbeels M. (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield, Agron. Sustain. Dev. 25, 425–432.CrossRefGoogle Scholar
  129. Sébillotte M. (1974) Agronomie et agriculture, analyse des tâches de l’agronome, Cah. Orstom, série Biol. 24, 3–25.Google Scholar
  130. Sébillotte M. (1978) Itinéraires techniques et évolution de la pensée agronomique, CR Acad. Agric. France 11, 906–913.Google Scholar
  131. Sébillotte M. (1990) Système de culture, un concept opératoire pour les agronomes, in: Combe L., Picard D. (Eds.), Les systèmes de culture, Paris, INRA, pp. 165–196.Google Scholar
  132. Shelton A.M., Badenes-Perez F.R. (2006) Concepts and applications of trap cropping in pest management, Annu. Rev. Entomol. 51, 285–308.PubMedCrossRefGoogle Scholar
  133. Sherr S., Milder J.C., Inbar M. (2007) Paying farmers for Stewardship, in: Sherr S., Mac Neely J.A. (Eds.), Farming with Nature, Island Press, Washington.Google Scholar
  134. Sibma L., Kort J., De Wit C.T. (1964) Experiments on competition as a means of detecting possible damage by nematodes, Jaarb Inst. Biol. Scheiks 1964, 119–124.Google Scholar
  135. Sinoquet H., Caldwell R.M. (1995) Estimation of light capture and partitioning in intercropping systems, in: Sinoquet H., Cruz P. (Eds.), Ecophysiology of Tropical Intercropping, INRA, Paris, pp. 79–97.Google Scholar
  136. Soussana J.-F., Lafarge L. (1998) Competition for resources between neighbouring species and patch scale vegetation dynamics in temperate grasslands, Ann. Zootech. 47, 371–382.CrossRefGoogle Scholar
  137. Soussana J.F., Loiseau P. (2002) A grassland ecosystem model with individual based interactions (GEMINI) simulates fluctuations in the clover content of sown mixtures, in: Multi-function grasslands: quality forages, animal products and landscapes, Proceedings of the 19th General Meeting of the European Grassland Federation, La Rochelle, France, 27–30 May 2002, pp. 358–359.Google Scholar
  138. Stephen W., Pacala J.A., Silander J. (1990) Field Tests of Neighborhood Population Dynamic Models of Two Annual Weed Species, Ecol. Monogr. 60, 113–134.CrossRefGoogle Scholar
  139. Stockle C.O. (1999) Simulation of agricultural systems: the challenges ahead, in: Proceedings of the International Symposium Modelling Cropping Systems, pp. 19–24, LLeida, Catalonia, Spain.Google Scholar
  140. Swift M.J., Anderson J.M. (1993) Biodiversity and ecosystem function in agroecosystems, in: Shultze E., Mooney H.A. (Eds.), Biodiversity and ecosystem function, Springer, New York, pp. 57–83.Google Scholar
  141. Swift M.J., Vandermeer J.H., Ramakrishnan P.S., Anderson J.M., Ong C., Hawkins B. (1996) Biodiversity and agroecosystem function, in: Mooney et al. (Eds.), Biodiversity and ecosystem function, Global diversity assessment, Cambridge University Press, pp. 433–443.Google Scholar
  142. Swift M.J., Izac A.M.N., Van Noordwijk M. (2004) Biodiversity and ecosystem services. Are we asking the right questions? Agr. Ecosyst. Environ. 104, 113–134.CrossRefGoogle Scholar
  143. Tilman D. (1984) Plant dominance along an experimental nutrient gradient, Ecology 65, 1445–1453.CrossRefGoogle Scholar
  144. Tilman D. (1988) Plant strategies and the dynamics and structures of plant communities, Princeton University Press, Princeton, NJ, USA.Google Scholar
  145. Tilman D., Wedin D., Knops J. (1996) Productivity and sustainability influenced by biodiversity in grasslands ecosystems, Nature 379, 718–720.CrossRefGoogle Scholar
  146. Tilman D., Knops J., Wedin D., Reich P., Ritchie M., Siemann E. (1997) The influence of functional diversity and composition on ecosystem processes, Science 277, 1300–1302.CrossRefGoogle Scholar
  147. Tilman D., Cassman K., Matson P., Naylor R., Polasky S. (2002) Agricultural sustainability and intensive production practices, Nature 418, 671–677.PubMedCrossRefGoogle Scholar
  148. Tixier P., Malezieux E., Dorel M. (2004) SIMBA-POP: a cohort population model for long-term simulation of banana crop harvest, Ecol. Model. 180, 407–417.CrossRefGoogle Scholar
  149. Torquebiau E. (2000) A renewed perspective on agroforestry concepts and classification, C.R. Acad. Sci. Paris 1009–1017.Google Scholar
  150. Trenbath B.R. (1974) Biomass productivity of mixtures, Adv. Agron. 26, 177–209.CrossRefGoogle Scholar
  151. Trenbath B.R. (1993) Intercropping for the management of pests and diseases, Field Crop. Res. 34, 381–405.CrossRefGoogle Scholar
  152. Tsubo M., Walker S., Ogindo H.O. (2005) A simulation model of cereallegume intercropping systems for semi-arid regions: I. Model development, Field Crop. Res. 93, 10–22.CrossRefGoogle Scholar
  153. Van der Werf W., Keesman K., Burgess P., Graves A., Pilbeam D., Incoll L.D., Metselaar K., Mayus M., Stappers R., van Keulen H. et al. (2007) Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems, Ecological Engineering (in press).Google Scholar
  154. Van Noordwijk M., Lawson G., Soumaré A., Groot J.J.R., Hairiah K., (1996) Root distribution of trees and crops: competition and/or complementarity, in: Ong C.K., Huxley P.W. (Eds.), Tree-Crop Interactions: A Physiological Approach, CAB International, Wallingford, UK, pp. 319–364.Google Scholar
  155. Van Noordwijk M., Lusiana B. (1998) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems, Agroforest. Syst. 43, 217–242.CrossRefGoogle Scholar
  156. Van Oijen M. (1995) Simulation models of potato late blight, in: Haverkort A.J., MacKerron (Eds.), Potato Ecology and Modeling of Crops under Conditions Limiting Growth, Kluwer Academic Publishers, Dordrecht, pp. 237–250.Google Scholar
  157. Vandermeer J.H. (1989) The Ecology of Intercropping, Cambridge University Press, Cambridge, UK.Google Scholar
  158. Vandermeer J., Van Noordwijk M., Anderson J., Ong C., Perfecto I. (1998) Global change and multi-species ecosystems: concepts and issues, Agr. Ecosyst. Environ. 67, 1–22.CrossRefGoogle Scholar
  159. Vila M., Vayreda J., Gracia C., Ibanez J.J. (2003) Does tree diversity increase wood production in pine forests? Oecologia 135, 299–303.PubMedGoogle Scholar
  160. Vincent G., Harja D. (2002) SLIM software: a simple light interception model for multi-species, multi-strata forests, Bois Forêts des Tropiques 2, 97–100.Google Scholar
  161. Wallace J.S., Batchelor C.H., Dabeesing D.N., Teeluck M., Soopramanien G.C. (1991) A comparison of the light interception and water-use of plant and first ratoon sugar-cane intercropped with maize, Agr. Forest Meteorol. 57, 85–105.CrossRefGoogle Scholar
  162. Welsh J.P., Philipps L., Bulson H.A.J., Wolfe M. (1999) Weed control for organic cereal crops. Proceedings of the Brighton Crop Protection Conference — Weeds, Brighton, UK, pp. 945–950.Google Scholar
  163. Willigen De P., Van Noordwijk M. (1987) Roots, plant production and nutrient use efficiency, Ph.D. Thesis, Wageningen Agricultural University, 281 p.Google Scholar
  164. Wit de C.T., Van Den Berg J.P. (1965) Competition between herbage plants, Neth. J. Agr. Sci. 13, 212–221.Google Scholar
  165. Wilson S.D., Tilman D. (1988) Components of plant competition along an experimental gradient of nitrogen availability, Ecology 72, 1050–1065.CrossRefGoogle Scholar
  166. Wong S.C., Osmond C.B. (1991) Elevated atmospheric partial pressure of CO2 and plant growth III. Interaction between Triticum aestivum (C3) and Echinocloea fumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below ground responses, estimated using a 13C value of root mass, Aust. J. Plant Phys. 18, 137–152.CrossRefGoogle Scholar
  167. Yeates G.W. (1987) How plants affect nematodes, Adv. Ecol. Res. 17, 61–113.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • E. Malézieux
    • 1
    Email author
  • Y. Crozat
    • 2
  • C. Dupraz
    • 3
  • M. Laurans
    • 4
  • D. Makowski
    • 5
  • H. Ozier-Lafontaine
    • 6
  • B. Rapidel
    • 1
    • 7
  • S. de Tourdonnet
    • 5
  • M. Valantin-Morison
    • 5
  1. 1.UMR SYSTEMCIRADMontpellierFrance
  2. 2.Laboratoire d’Écophysiologie Végétale et AgroécologieGroupe ESAAngers Cedex 01France
  3. 3.UMR SYSTEMINRAMontpellierFrance
  4. 4.UMR AMAPCIRADMontpellierFrance
  5. 5.UMR 211 INRA AgroParisTechINRAThiverval-GrignonFrance
  6. 6.Unité AgroPédoclimatique de la Zone Caraïbe, Domaine DuclosINRAPetit-Bourg, GuadeloupeFrance
  7. 7.CATIETurrialbaCosta Rica

Personalised recommendations