Skip to main content

Role of phosphate-solubilizing microorganisms in sustainable agriculture — A review

Abstract

Compared with the other major nutrients, phosphorus is by far the least mobile and available to plants in most soil conditions. Although phosphorus is abundant in soils in both organic and inorganic forms, it is frequently a major or even the prime limiting factor for plant growth. The bioavailability of soil inorganic phosphorus in the rhizosphere varies considerably with plant species, nutritional status of soil and ambient soil conditions. To circumvent phosphorus deficiency, phosphate-solubilizing microorganisms (PSM) could play an important role in supplying phosphate to plants in a more environmentally-friendly and sustainable manner. The solubilization of phosphatic compounds by naturally abundant PSM is very common under in vitro conditions; the performance of PSM in situ has been contradictory. The variability in the performance has thus greatly hampered the large-scale application of PSM in sustainable agriculture. Numerous reasons have been suggested for this, but none of them have been conclusively investigated. Despite the variations in their performance, PSM are widely applied in agronomic practices in order to increase the productivity of crops while maintaining the health of soils. This review presents the results of studies on the utilization of PSM for direct application in agriculture under a wide range of agro-ecological conditions with a view to fostering sustainable agricultural intensification in developing countries of the tropics and subtropics.

This is a preview of subscription content, access via your institution.

References

  • Abd-Alla M.H. (1994) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium, Folia Microbiol. 39, 53–56.

    CAS  Article  Google Scholar 

  • Ahmed S. (1995) Agriculture — Fertilizer Interface In Asia Issues of Growth and sustainability, Oxford and IBH publishing Co, New Delhi.

    Google Scholar 

  • Algawadi A.R., Gaur A.C. (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea, Plant Soil 105, 241–246.

    Article  Google Scholar 

  • Amann R.I. (1995) Fluorescently labeled rRNA targeted nucleotide probes in the study of microbial ecology, Microbial. Ecol. 4, 543–554.

    CAS  Google Scholar 

  • Ames R.N., Reid C.P.P., Ingham E.R. (1984) Rhizosphere bacterial population responses to root colonization by a vesicular arbuscular mycorrhizal fungus, New Phytol. 96, 555–563.

    Article  Google Scholar 

  • Amijee F., Tinker P.B., Stribley D.P. (1989) Effect of phosphorus on the morphology of vesicular-arbuscular mycorrhizal root system of leek (Allium porrum L.), Plant Soil 119, 334–336.

    CAS  Article  Google Scholar 

  • Antunes V., Cardoso E.J.B.E. (1991) Growth and nutrient status of citrus plants as influenced by mycorrhiza and phosphorus application, Plant Soil 131, 11–19.

    CAS  Google Scholar 

  • Asea P.E.A., Kucey R.M.N., Stewart J.W.B. (1988) Inorganic Phosphate solubilization by two Penicillium species in solution culture and soil, Soil Biol. Biochem. 20, 459–464.

    CAS  Article  Google Scholar 

  • Azaizeh H.A., Marshner A., Romheld V., Wittenmayer L. (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil grown maize plants, Mycorrhiza 5, 321–327.

    Article  Google Scholar 

  • Azcon-Aguilar C., Diaz-Rodriguez R., Barea J.M. (1986) Effect of soil microorganisms on spore germination and growth on the vesicular arbuscular mycorrhizal fungus (Glomus moseae), Trans. Brit. Mycol. Soc. 86, 337–340.

    Article  Google Scholar 

  • Babu-Khan S., Yeo T.C., Martin W.I., Duron M.R., Rogers R.D., Goldstein A.H. (1995) Cloning of a mineral phosphate solubilizing gene from Pseudomonas cepacia, Appl. Environ. Microbiol. 61, 972–978.

    PubMed  CAS  Google Scholar 

  • Bagyaraj D.J. (1984). Biological interaction with VA mycorrhizal fungi, in: Powell C.L., Bagyaraj D.J. (Eds.), VA mycorrhiza, CRC Press, Boca Raton, pp. 131–153.

    Google Scholar 

  • Banik S., Dey B.K. (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms, Plant Soil 69, 353–364.

    CAS  Article  Google Scholar 

  • Banik S., Dey B.K. (1983) Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source, Zbl. Microbiol. 138, 17–23.

    CAS  Google Scholar 

  • Barber S.A. (1984) Soil nutrient bioavailability, John Wiley, New York, USA.

    Google Scholar 

  • Barea J.M., Azcon R., Azcon-Aguilar C. (1983) Interaction between phosphate solubilizing bacteria and VA mycorrhiza to improve the utilization of rock phosphate by plants in non acidic soils, Third Inter. Congress on Phosphorus Compounds, Brussels, pp. 127–152.

    Google Scholar 

  • Barea J.M., El-Atrach F., Azcon R. (1991) The role of VA mycorrhizas in improving plant N acquisition from soil as assessed with 15N. The use of stable isotopes in plant nutrition, in: Fitton C. (Ed.), Soil Fertility and Enviornmental Studies, Joint AIEA, FAO, Division, Vienna, pp. 677–808.

    Google Scholar 

  • Bar-Yosef B., Rogers R.D., Wolfram J.H., Richman E. (1999) Pseudomonas cepacia mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions, Soil Sci. Soc. Am. J. 63, 1703–1708.

    CAS  Article  Google Scholar 

  • Bashan Y., Puente M.E., Rodriquea M.N., Toledo G., Holguin G., Ferrera-Cerrato R., Pedrin S. (1995) Survival of Azorhizobium brasilense in the bulk soil and rhizosphere of 23 soil types, Appl. Environ. Microbiol. 61, 1938–1945.

    PubMed  CAS  Google Scholar 

  • Bethlenfalvay G.J. (1994) Sustainability and rhizoorganisms in an ecosystem, Sociedad Maxicana de la Ciencia del Suelo. 4, 9–10.

    Google Scholar 

  • Bolan N.S. (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plant, Plant Soil 134, 189–207.

    CAS  Article  Google Scholar 

  • Bolan N.S., Robson A.D., Barrow N.I. (1987) Effect of vesicular arbuscular mycorrhiza on availability of iron phosphates to plants, Plant Soil 99, 401–410.

    CAS  Article  Google Scholar 

  • Burgstaller W., Stxaser H., Shinner F. (1992) Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: bioreactor, leaching and stoichiometry, Environ. Sci. Technol. 26, 340–346.

    CAS  Article  Google Scholar 

  • Burkert B., Robson A. (1994) Zn uptake in subterranean clover (Trifolium subterraneum 1.) by three vesicular-arbuscular mycorrhizal fungi in a root free sandy soil, Soil Biol. Biochem. 26, 1117–1124.

    Article  Google Scholar 

  • Chabot R., Anton H., Cescas M.P. (1996): Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar phaseoli, Plant Soil 184, 311–321.

    CAS  Article  Google Scholar 

  • Colbert S.F., Hendson M., Ferri M., Schroth M.N. (1993) Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate, Appl. Microbiol. 59, 2071–2076.

    CAS  Google Scholar 

  • Cooper J.E., Bjourson A.J., Streit W., Werner D. (1998) Isolation of unique nucleic acid sequence from rhizobia by genomic subtraction: Application in microbial ecology and symbiotic gene analysis, Plant Soil 204, 47–55.

    CAS  Article  Google Scholar 

  • Cruz R.E. de la., Manalo M.Q., Aggangan N.S., Tambalo J.D. (1988) Growth of three legume trees inoculated with VA mycorrhizal fungi and Rhizobium, Plant Soil 108, 111–115.

    Article  Google Scholar 

  • Cunningham J.E., Kuiack C. (1992) production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaji, Appl. Environ. Microbiol. 58, 1451–1458.

    PubMed  CAS  Google Scholar 

  • Downey J., Van Kessel C. (1990) Dual inoculation of Pisum sativum with Rhizobium leguminosarum and Penicillium bilaji, Biol. Fert. Soils 10, 194–196.

    Google Scholar 

  • Dubey S.K. (1996) Response of soybean to rock phosphate applied with Pseudomonas striata in a typic chromustert, J. Ind. Soc. Soil Sci. 44, 252–255.

    Google Scholar 

  • Dubey S.K., Billore S.D. (1992) Phosphate solubilizing microorganisms (PSM) as inoculant and their role in augmenting crop productivity in India, Crop Res. 5, 11.

    Google Scholar 

  • Dudeja S.S., Khurana A.L., Kundu B.S. (1981) Effect of Rhizobium and phosphomicroorganism on yield and nutrient uptake in chickpea, Curr. Sci. 50, 503.

    CAS  Google Scholar 

  • Dubey S.K. (2001) Associative effect of nitrogen fixing and phosphate solubilizing bacteria in rainfed soybean (Glycine max) grown in vertisols, Indian J. Agric. Sci. 71, 476–479.

    Google Scholar 

  • Duponnois R., Colombet A., Hien V., Thioulouse J. (2005) The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea, Soil Biol. Biochem. 37, 1460–1468.

    CAS  Article  Google Scholar 

  • Duponnois R., Kisa M., Plenchette C. (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora, J. Plant Nutr. Soil Sci. 169, 280–282.

    CAS  Article  Google Scholar 

  • Elgala H.M., Ishac Y.Z., Abdel-Monem M., El-Ghandour I.A.I., Hang P.M., Berthelin J., Bollag J.M., McGill W.B., Page A.I. (1995) Effect of single and combined inoculation with Azotobacter and VA mycorrhizal fungi on growth and nutrient content of maize and wheat plants, Environ. Impact Soil Component Interactions. 2, 109–116.

    CAS  Google Scholar 

  • Frederic B.G., Estefania A., Jordi B.F., Charles A.A., Dolors M.B., Manel P. (2000) Assessment of microbial community structure changes by amplified rhibosomal DNA restriction analysis (ARDRA), Int. Microbiol. 3, 103–106.

    Google Scholar 

  • Gaume A. (2000) Low P tolerance of various maize cultivars; the contribution of the root exudation, Ph.D. dissertation, Swiss Federal institute of Technology, Zurich, Switzerland.

    Google Scholar 

  • Gaur A.C. (1990) Phosphate solubilizing microorganisms as biofertilizers, Omega Scientific Publisher, New Delhi, p. 176.

    Google Scholar 

  • Giand S., Gaur A.C. (1991) Thermotolerant phosphate solubilizing microorganisms and their interactions in mungbean, Plant Soil 133, 141–149.

    Article  Google Scholar 

  • Glick B.R., Bashan Y. (1997) Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens, Biotechnol. Adv. 15, 353–378.

    PubMed  CAS  Article  Google Scholar 

  • Goldstein A.H., Rogers R.D., Mead G. (1993) Mining by microbe, Bio. Technol. 11, 1250–1254.

    CAS  Google Scholar 

  • Gupta R.R., Singal R., Shanker A., Kuhad R.C., Saxena R.K. (1994) A modified plate assay for secreening phosphate solubilizing microorganisms, J. Gen. Appl. Microbiol. 40, 255–260.

    CAS  Article  Google Scholar 

  • Guissou T., Bâ A.M., Guinko S., Plenchette C., Duponnois R. (2001) Mobilisation des phosphates naturels de kodijari par des jujubiers (Ziziphus mauritiana Lam.) mycorhizes dans un sol acidifié avec de la tourbe, Fruits 56, 261–269.

    Article  Google Scholar 

  • Gull M., Hafeez F.Y., Saleem M., Malik K.A. (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture, Aust. J. Exp. Agr. 44, 623–628.

    CAS  Article  Google Scholar 

  • Gunasekaran S., Pandiyarajan P. (1995) Dual inoculation of Rhizobium and phosphobacteria with two forms of phosphorus in pigeonpea, in: Microbiology Abstracts. XXXVI. Annual conference of the Association of Microbiologists of India, Hissar, Nov. 8–10, p. 111.

  • Gyaneshwar P., Naresh K.G., Parekh L.J. (1998a) Effect of buffering on the phosphate solubilizing ability of microorganisms, World J. Microb. Biot. 14, 669–673.

    CAS  Article  Google Scholar 

  • Gyaneshwar P., Naresh Kumar G., Parekh L.J. (1998b) Cloning of mineral phosphate solubilizing genes from Synechocystis PCC 6803, Curr. Sci. India 74, 1097–1099.

    CAS  Google Scholar 

  • Gyaneshwar P., Parekh L.J., Archana G., Podle P.S., Collins M.D., Hutson R.A., Naresh K.G. (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae, FEMS Microbiol. Lett. 171, 223–229.

    CAS  Article  Google Scholar 

  • Halder A.K., Chakrabarty P.K. (1993) Solubilization of inorganic phosphate by Rhizobium., Folia Microbiol. 38, 325–330.

    CAS  Article  Google Scholar 

  • Haider A.K., Misra A.K., Chakrabarty P.K. (1991) Solubilization of inorganic phosphates by Bradyrhizobium, Ind. J. Exp. Biol. 29, 28–31.

    Google Scholar 

  • Hayman D.S. (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis, Can. J. Bot. 61, 944–963.

    Article  Google Scholar 

  • Hobbie S.E. (1992) Effects of plant species on nutrient cycling, Trends Ecol. Evol. 7, 336–339.

    PubMed  CAS  Article  Google Scholar 

  • Holben W.E., Noto K., Sumino T., Suwa Y. (1998) Molecular analysis of bacterial communities in a three compartment granular activated sludge system indicates community-level control by incompatible nitrification process, Appl. Environ. Microbiol. 64, 2528–2532.

    PubMed  CAS  Google Scholar 

  • Ho W.C., Ko W.H. (1985) Effect of environmental edaphic factors, Soil Biol. Biochem. 17, 167–170.

    Article  Google Scholar 

  • Hoon H., Park R.D., Kim Y.W., Rim Y.S., Park K.H., Kim T.H., Such J.S., Kim K.Y. (2003) 2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium, Current Microbiol. 47, 87–92.

    Article  Google Scholar 

  • Hugenholtz P., Goebel B.M., Pace N.R. (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity, J. Bacteriol. 180, 4765–4774.

    PubMed  CAS  Google Scholar 

  • Illmer P., Schinner F. (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil, Soil Biol. Biochem. 24, 389–395.

    Article  Google Scholar 

  • Illmer P.A., Barbato A., Schinner F. (1995) Solubilization of hardly soluble A1PO4 with P-solubilizing microorganisms, Soil Biol. Biochem. 27, 260–270.

    Google Scholar 

  • Jeffries P. (1987) Use of mycorrhizae in agriculture, CRC Crit. Rev. Biotechnol. 5, 319–357.

    Article  Google Scholar 

  • Johri J.K., Surange S., Nautiyal C.S. (1999) Occurrence of salt, pH and temperature tolerant phosphate solubilizing bacteria in alkaline soils, Curr. Microbiol. 39, 89–93.

    PubMed  CAS  Article  Google Scholar 

  • Kang S.C., Ha C.G., Lee T.G., Maheshwari D.K. (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102, Curr. Sci. 82, 439–442.

    CAS  Google Scholar 

  • Khan M.S., Aamil M., Zaidi A. (1997) Associative effect of Bradyrhizobium sp. (vigna) and phosphate solubilizing bacteria on moongbean [Vigna radiata (L.) wilczek], Biojournal. 10, 101–106.

    Google Scholar 

  • Khan M.S., Aamil M., Zaidi A. (1998) Moongbean response to inoculation with nitrogen fixing and phosphate solubilizing bacteria, in: Deshmukh A.M. (Ed.), Biofertilizers and biopesticides, Technoscience Publications, Jaipur, pp. 40–48.

    Google Scholar 

  • Kim K.Y., Jordan D., McDonald G.A. (1997) Solubilization of hydroxyapatite by Enterobacter agglomerons and cloned Escherichia coli in culture medium, Biol. Fert. Soils 24, 347–352.

    CAS  Article  Google Scholar 

  • Kim K.Y., Jordan D., McDonald G.A. (1998) Enterobacter agglomerons, phosphate solubilizing bacteria and microbial activity in soil: Effect of carbon sources, Soil Biol Biochem. 30, 995–1003.

    CAS  Article  Google Scholar 

  • Kloepper J.W., Schroth M.N., Miller T.D. (1980) Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield, Phytopathol. 70, 1078–1082.

    Article  Google Scholar 

  • Koide T.R., Shreinner P.R. (1992) Regulation of vesicular arbuscular mycorrhizal symbiosis, Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 557–581.

    CAS  Article  Google Scholar 

  • Kucey R.M.N. (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils, Can. J. Soil Sci. 63, 671–678.

    CAS  Article  Google Scholar 

  • Kucey R.M.N. (1987) Increased P uptake by wheat and field beans inoculated with a phosphorus solubilizing Penicillium bilaji strain and with vesicular arbuscular mycorrhizal fungi, Appl. Environ. Micobiol. 53, 2699–2703.

    CAS  Google Scholar 

  • Kucey R.M.N. (1988) Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat, Can. J. Soil Sci. 68, 261–270.

    CAS  Article  Google Scholar 

  • Kucey R.M.N., Janzen H.H., Legget M.E. (1989) Microbial mediated increases in plant available phosphorus, Adv. Agron. 42, 199–228.

    CAS  Article  Google Scholar 

  • Kumar V., Behl R.K., Narula N. (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions, Microbiol. Res. 156, 87–93.

    PubMed  CAS  Article  Google Scholar 

  • Kundu B.S., Gaur A.C. (1980) Effect of nitrogen fixing and phosphate solubilizing microorganism as single and composite inoculants on cotton, Ind. J. Microbiol. 20, 225–229.

    Google Scholar 

  • Kundu B.S., Gaur A.C. (1981) Effect of single and composite cultures on rock phosphate solubilization, Haryana Agric. Univ. J. Res. 11, 559–562.

    Google Scholar 

  • Lapeyrie F., Ranger J., Varelles D. (1991) Phosphate solubilizing activity of ectomycorhhizal fungi in vitro, Can. J. Bot. 69, 342–346.

    CAS  Article  Google Scholar 

  • Lapeyrie F. (1988) Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus, Plant Soil 110, 3–8.

    CAS  Article  Google Scholar 

  • Leisinger K.M. (1999) Biotechnology and food security, Curr. Sci. India 76, 488–500.

    Google Scholar 

  • Leopold H., Hofner W. (1991) Improvement of clover yield and quality by inoculation with VAM fungi and Rhizobium bacteria, Angew. Bot. 65, 23–33.

    Google Scholar 

  • Lindsay W.L., Vlek P.L.G., Chien S.H. (1989) Phosphate minerals, in: Dixon J.B., Weed S.B., Soil environment, 2nd ed., Soil Sci. Soc. America, Madison, pp. 1089–1130.

    Google Scholar 

  • Lynch J.M. (1983). Soil Biotechnology: Microbiological factors in crop productivity, Blackwell, Scientific Publications, Oxford.

    Google Scholar 

  • Maliha R., Samina K., Najma A., Sadia A., Farooq L. (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions, Pakistan J. Biol. Sci. 7, 187–196.

    Article  Google Scholar 

  • Marshner P., Crowley D.E., Higashi M. (1997) Root exudation and physiological status of a root colonizing fluorescent Pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annum L.), Plant Soil 189, 11–20.

    Article  Google Scholar 

  • Martinez-Murcia A.J., Acinas S.G., Rodriguez-Valera F. (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hipersaline environments, FEMS Microbiol. Ecol. 17, 247–256.

    CAS  Google Scholar 

  • Mehana T.A., Wahid O.A.A. (2002) Associative effect of phosphate dissolving fungi, Rhizobium and phosphate fertilizer on some soil properties, yield components and the phosphorus and nitrogen concentration and uptake by Vicia faba L. under field conditions, Pakistan J. Biol. Sci. 5, 1226–1231.

    Article  Google Scholar 

  • Motsara M.R., Bhattacharyya P.B., Srivastava B. (1995) Biofertilizerstheir description and characteristics, in: Biofertilizer Technology, Marketing and Usage, A sourcebook-cum-Glossary, Fertilizer development and consultation organisation 204–204, A Bhanot Corner, 1-2 Pamposh Enclave, New Delhi, 110048, India, pp. 9–18.

    Google Scholar 

  • Moyer C.L., Dobbs F.C., Karl D.M. (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S r RNA genes from a microbial mat at an active, hydrothermal vent system, Loithi Seamount, Hawaii, Appl. Environ. Microb. 60, 871–879.

    CAS  Google Scholar 

  • Mukherjee P.K., Rai R.K. (2000) Effect of vesicular arbuscular mycorrhizae and phosphate solubilizing bacteria on growth, yield and phosphorus uptake by wheat (Triticum aestivum) and chickpea (Cicer arietinum), Indian J. Agron. 45, 602–607.

    Google Scholar 

  • Nahas E. (1996) Factors determining rock phosphate solubilization by microorganism isolated from soil, World J. Microb. Biot. 12, 18–23.

    Google Scholar 

  • Narula N., Kumar V., Behl R.K., Duebel A.A., Gransee A., Merbach W. (2000) Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under green house conditions, J. Plant Nutr. Soil Sci. 163, 393–398.

    CAS  Article  Google Scholar 

  • Nautiyal C.S. (1999) An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms, FEMS Microbiol. Lett. 170, 265–270.

    PubMed  CAS  Article  Google Scholar 

  • Norrish K., Rosser H. (1983) Mineral phosphate, in: Soils, an Australian viewpoint, Academic press, Melbourne, CSIRO/London, UK, Australia, pp. 335–361.

    Google Scholar 

  • Natarajan T., Subrammanian P. (1995) Response of phosphobacteria along with Rhizobium at two levels of phosphorus on groundnut, in: Microbiology Abstracts, XXXVI Annual Conference of the Association of Microbiologists of India, Hissar, Nov. 8–10, p. 111.

  • Nozawa M., Hu H.Y., Fujie K., Tanaka H., Urano K. (1998) Quantitative detection of Enterobacter cloacae strai HO-I In bioreactor for chromate wastewater treatment using polymerase chain reaction (PCR), Water Res. 32, 3472–3476.

    CAS  Article  Google Scholar 

  • Omar S.A. (1998) The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate, World J. Microb. Biot. 14, 211–219.

    CAS  Article  Google Scholar 

  • Ozanne P.G. (1980) Phosphate nutrition of plants — general treatise. The role of phosphorus in agriculture, in: Khasawneh F.E., Sample E.C., Kamprath E.J. (Eds.), American Soc. Agron. Crop Sci. Soc. America, Soil Sci. Soc. America, Madison, WI, USA, pp. 559–589.

    Google Scholar 

  • Parks E.J., Olson G.J., Brinckman F.E., Baldi F. (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus, J. Ind. Microbiol. Biot. 5, 183–189.

    CAS  Google Scholar 

  • Perveen S., Khan M.S., Zaidi A. (2002) Effect of rhizospheric microorganisms on growth and yield of greengram (Phaseolus radiatus), Indian J. Agr. Sci. 72, 421–423.

    Google Scholar 

  • Piccini A., Azcon R. (1987) Effect of phosphate solubilizing bacteria and vesicular arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand vermiculite medium, Plant Soil 101, 45–50.

    CAS  Article  Google Scholar 

  • Pikovskaya R.I. (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species, Microbiology 17, 362–370.

    CAS  Google Scholar 

  • Poi S.C., Ghosh G., Kabi M.C. (1989) Response of chickpea (Cicer aeritinum L.) to combined inoculation with Rhizobium, phosphobacteria and mycorrhizal organisms, Zbl. Microbiol. 114, 249–253.

    Google Scholar 

  • Ponmurugan P., Gopi C. (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria, African J. Biotechnol. 5, 348–350.

    CAS  Google Scholar 

  • Prabakaran J., Ravi K.B., Srinivasan K. (1996) Response of Vamban-1 Blackgram to N2 fixer and P mobilizers in acid soil, in: Microbiology Abstracts, XXXVII Annual Conference of the Microbiologists of India, IIT, Chennai, Dec, 4–6, p. 120.

  • Pradhan N., Sukla L.B. (2005) Solubilization of inorganic phosphate by fungi isolated from agriculture soil, African J. Biotechnol. 5, 850–854.

    Google Scholar 

  • Remy W., Taylor T.N., Hass H., Kerp H. (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae, Proceedings of the National Academy of Sciences, USA 91, pp. 11841–11843.

  • Reyes I., Bernier L., Simard R.R., Antoun H. (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV induced mutants, FEMS Micobiol. Ecol. 28, 281–290.

    CAS  Article  Google Scholar 

  • Roos W., Luckner M. (1984) Relationships between proton extrusion and fluxes of ammonium ions and organic acid in Penicillium cyclopium, J. Gen. Microbiol. 130, 1007–1014.

    CAS  Google Scholar 

  • Saber M.S.M., Kabesh M.O. (1990) Utilization of biofertilizers in field crop production. II. A comparison study on the effect of biofertilization or sulphur application on yield and nutrient uptake by lentil plants, Egyptian J. Soil Sci. 30, 415–422.

    CAS  Google Scholar 

  • Saber K., Nahla L., Ahmed D., Chedly A. (2005) Effect of P on nodule formation and N fixation in bean, Agron. Sustain. Dev. 25, 389–393.

    Article  CAS  Google Scholar 

  • Sarojini V., Verma S., Mathur R.S. (1990) The effects of microbial inoculations on the yield of wheat when grown in straw amended soil, Biol. Wastes 33, 9–16.

    Article  Google Scholar 

  • Sarojini V., Verma S., Mathur M.S. (1989) Biocoenotic association between nitrogen fixing and phosphate solubilizing microorganisms, Curr. Sci. India 59, 1099–1100.

    Google Scholar 

  • Satizabal E.J.H., Saif U.S.R. (1987) Interaction between vesicular arbuscular mycorrhiza and leguminous Rhizobium in an oxisol of the eastern plains of Colombia, Acta Agron. 7–21.

  • Sattar M.A., Gaur A.C. (1987) Production of auxins and gibberellins by phosphate dissolving microorganisms, Zbl. Mikrobiol. 142, 393–395.

    CAS  Google Scholar 

  • Schreiner R.P., Mishra R.L., Mc Daniel K.L., Benthlenfalvay G.J. (2003) Mycorrhizal fungi influence plant and soil functions and interactions, Plant Soil 188, 199–209.

    Article  Google Scholar 

  • Shachar-Hill Y., Pfeffer P.E., Douds D., Osman S.F., Doner L.W., Ratcliffe R.G. (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leeks, Plant Physiol. 108, 7–15.

    PubMed  CAS  Google Scholar 

  • Singal R., Gupta R., Saxena R.K. (1994) Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. foetidus, Folia 39, 33–36.

    CAS  Article  Google Scholar 

  • Singh H.P. (1990) Response of dual inoculation with Bradyrhizobium and VAM mycorrhiza or phosphate solubilizer on soybean in mollisol, in: Jalali B.L., Chand H. (Eds.), Trends in mycorrhiza. Research Proceedings of the National conference on Mycorrhiza, HAU, Hisar, India, Feb. 14–16.

    Google Scholar 

  • Singh H.P., Singh T.A. (1993) The interaction of rock phosphate, Bradyrhizobium, vesicular arbuscular mycorrhizae and phosphate solubilizing microbes on soybean grown in a sub-Himalyan mollisol, Mycorrhiza 4, 37–43.

    Article  Google Scholar 

  • Son C.L., Smith S.E. (1995) Mycorrhizal growth responses: interaction between photon irradiance and phosphorus nutrition, New Phytol. 108, 305–314.

    Article  Google Scholar 

  • Snaidr J., Amann R., Huber I., Ludwiig W., Schleifer K.H. (1998) Phylogenetic analysis and in situ identification of bacteria in activated sludge, Appl. Environ. Microb. 63, 2884–2896.

    Google Scholar 

  • Stevenson F.J. (1986) Cycles of soil carbon, nitrogen, phosphorus, sulphur micronutrients, Wiley, New York.

    Google Scholar 

  • Subha Rao N.S. (1982) Advances in Agricultural Microbiology, in: Subha Rao N.S. (Ed.), Oxford and IBH Publ. Co., pp. 229–305.

  • Tinker P.B. (1980) The role of phosphorus in Agriculture, in: Khasawneh F.E., Sample E.C., Kamprath E.J. (Eds.), Soil Sci. Soc. Am. Madison, WI.

    Google Scholar 

  • Tisdall J.M. (1994) Possible role of soil microorganisms in aggregation in soils, Plant Soil 159, 115–121.

    Google Scholar 

  • Thiagrajan T.R., Ames R.N., Ahmad M.H. (1992) Response of cowpea (Vigna unguiculata) to inoculated with co-selected vesicular arbuscular mycorrhizal fungi and Rhizobium strains in field trials, Can. J. Microbiol. 38, 573–576.

    Article  Google Scholar 

  • Tomar S.S., Pathan M.A., Gupta K.P., Khandkar U.R. (1993) Effect of phosphate solubilizing bacteria at different levels of phosphate on black gram (Phaseolus mungo), Indian J. Agron. 38, 131–133.

    CAS  Google Scholar 

  • Trappe J.M. (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint, in: Safir G.R. (Ed.), Ecophysiology of VA mycorrhizal plants, Boca Raton, FL, CRC Press, USA, pp. 5–25.

    Google Scholar 

  • Van Elsas J.D., Van Overbeek L.S., Fouchier R. (1991) A specific marker pat for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques, Plant Soil 138, 49–60.

    Article  Google Scholar 

  • Vassilev N., Fenice M., Federici F. (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variable P16, Biotechnol. Tech. 20, 585–588.

    Article  Google Scholar 

  • Venkateswarlu B., Rao A.V., Raina P., Ahmad N. (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil, J. Ind. Soc. Soil Sci. 32, 273–277.

    CAS  Google Scholar 

  • Van Veen J.A., Leonard S., Van Overbeek L.S., Van Ellsas J.D. (1997) Fate and activity of microorganisms introduced into soil, Microbiol. Mol. Biol. R. 61, 121–135.

    Google Scholar 

  • Vasil I.K. (1998) Biotechnology and Food security for 21st century: A real world perspective, Nat. Biotechnol. 16, 399–400.

    PubMed  CAS  Article  Google Scholar 

  • Vazquez P., Holguin G., Puente M., Elopez Cortes A., Bashan Y. (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon, Biol. Fert. Soils 30, 460–468.

    CAS  Article  Google Scholar 

  • Wahid O.A., Mehana T.A. (2000) Impact of phosphate solubilizing fungi on the yield and phosphorus uptake by wheat and faba bean plants, Microbiol. Res. 155, 221–227.

    PubMed  CAS  Google Scholar 

  • Whitelaw M.A., Harden T.J., Helyar K.R. (1999) Phosphate solubilization in solution culture by the soil fungus penicillium radicum, Soil Biol. Biochem. 32, 655–665.

    Article  Google Scholar 

  • Whitelaw M.A. (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi, Adv. Agron. 69, 99–151.

    CAS  Article  Google Scholar 

  • Zaidi A. (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms, Ph.D. Thesis, Aligarh Muslim University, Aligarh.

    Google Scholar 

  • Zaidi A., Khan M.S. (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat, J. Plant Nutr. 28, 2079–2092.

    CAS  Article  Google Scholar 

  • Zaidi A., Khan M.S., Amil M. (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.), Eur. J. Agron. 19, 15–21.

    Article  Google Scholar 

  • Zaidi A., Khan M.S., Aamil M. (2004) Bio-associative effect of rhizospheric microorganisms on growth, yield and nutrient uptake of greengram, J. Plant Nutr. 27, 599–610.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan.

About this article

Cite this article

Khan, M.S., Zaidi, A. & Wani, P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture — A review. Agron. Sustain. Dev. 27, 29–43 (2007). https://doi.org/10.1051/agro:2006011

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2006011

Keywords

  • Arbuscular Mycorrhizal Fungus
  • Mycorrhizal Fungus
  • Rock Phosphate
  • Sustainable Agriculture
  • Biological Nitrogen Fixation