Advertisement

Agronomy for Sustainable Development

, Volume 30, Issue 3, pp 529–544 | Cite as

Water deficit and nitrogen nutrition of crops. A review

  • Victoria Gonzalez-DugoEmail author
  • Jean-Louis Durand
  • François Gastal
Review Article

Abstract

Among the environmental factors that can be modified by farmers, water and nitrogen are the main ones controlling plant growth. Irrigation and fertilizer application overcome this effect, if adequately used. Agriculture thus consumes about 85% of the total fresh water used worldwide. While only 18% of the world’s cultivated areas are devoted to irrigated agriculture, this total surface represents more than 45% of total agricultural production. These data highlight the importance of irrigated agriculture in a framework where the growing population demands greater food production. In addition, tighter water restrictions and competition with other sectors of society is increasing pressure to diminish the share of fresh water for irrigation, thus resulting in the decrease in water diverted for agriculture.The effect of water and nutrient application on yield has led to the overuse of these practices in the last decades. This misuse of irrigation and fertilizers is no longer sustainable, given the economic and environmental costs. Sustainable agriculture requires a correct balance between the agronomic, economic and environmental aspects of nutrient management. The major advances shown in this review are the following: (1) the measurement of the intensity of drought and N deficiency is a prerequisite for quantitative assessment of crop needs and management of both irrigation and fertilizer application. The N concentration of leaves exposed to direct irradiance allows both a reliable and high-resolution measurement of the status and the assessment of N nutrition at the plant level. (2) Two experiments on sunflower and on tall fescue are used to relate the changes in time and irrigation intensity to the crop N status, and to introduce the complex relationships between N demand and supply in crops. (3) Effects of water deficits on N demand are reviewed, pointing out the high sensitivity of N-rich organs versus the relative lesser sensitivity of organs that are poorer in N compounds. (4) The generally equal sensitivities of nitrifying and denitrifying microbes are likely to explain many conflicting results on the impact of water deficits on soil mineral N availability for crops. (5) The transpiration stream largely determines the availability of mineral N in the rhizosphere. This makes our poor estimate of root densities a major obstacle to any precise assessment of N availability in fertilized crops. (6) The mineral N fluxes in the xylem are generally reduced under water deficit and assimilation is generally known to be more sensitive to water scarcity. (7) High osmotic pressures are maintained during grain filling, which enables the plant to recycle large amounts of previously assimilated N. Its part in the total grain N yield is therefore generally higher under water deficits. (8) Most crop models currently used in agronomy use N and water efficiently but exhibit different views on their interaction.

drought nitrogen nutrition status supply demand balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addiscott T.M., Withmore A.P., Powlson D.S. (1991) Farming, fertilisers and the nitrate problem, CAB International, Wallingford, UK.Google Scholar
  2. Akmal M., Janssens M.J.J. (2004) Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies, Field Crop. Res. 88, 143–155.CrossRefGoogle Scholar
  3. Alvarez de Toro J. (1987) Respueta del girasol (Helianthus annuus L.) a un suministro variable de agua de reigo y de nitrogeno, University of Cordoba.Google Scholar
  4. Andrews M. (1986) The partitioning of nitrate assimilation betwen root and shoot of higher plants, Plant Cell Environ. 9, 511–519.Google Scholar
  5. Angus J.F., Mancur M.W. (1985) Models of growth and development of wheat in relation to plant nitrogen, Aust. J. Agr. Res. 36, 537–544.CrossRefGoogle Scholar
  6. Arora A., Singh V.P., Mohan J. (2001) Effect of nitrogen and water stress on photosynthesis and nitrogen content in wheat, Biol. Plantarum 44, 153–155.CrossRefGoogle Scholar
  7. Asseng S., Cao W., Zhang W., Ludwig F. (2009) Crop physiology, Modelling and Climate Change: Impact and Adaptation Strategies, in: Sadras V.O., Calderini D.F. (Eds.), Crop Physiology, Academic Press, Amsterdam, pp. 511–545.CrossRefGoogle Scholar
  8. Aulakh M.S., Malhi S.S. (2005) Interactions of Nitrogen with Other Nutrients and Water: Effect on Crop Yield and Quality, Nutrient Use Efficiency, Carbon Sequestration, and Environmental Pollution, in: Sparks D.L. (Ed.), Advances in Agronomy, pp. 341–409.Google Scholar
  9. Austin A.T., Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A., Schaffer S.M. (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecologia 141, 221–235.PubMedCrossRefGoogle Scholar
  10. Azedo-Silva J., Osório J., Fonseca F., Correia M.J. (2004) Effects of soil drying and subsequent re-watering on the activity of nitrate reductase in roots and leaves of Helianthus annuus, Funct. Plant Biol. 31, 611–621.CrossRefGoogle Scholar
  11. Bahrun A., Jensen C.R., Asch F., Mogensen V.O. (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.), J. Exp. Bot. 53, 251–263.PubMedCrossRefGoogle Scholar
  12. Barber S.A. (1974) Influence of the plant root on ion movement in soils, in: Carson E.W. (Ed.), The Plant Root and its Environment, University Press of Virginia, Chalottesville, pp. 525–564.Google Scholar
  13. Barbottin A., Lecomte C., Bouchard C., Jeuffroy M.H. (2005) Nitrogen Remobilization during Grain Filling in Wheat: Genotypic and Environmental Effects, Crop Sci. 45, 1141–1150.CrossRefGoogle Scholar
  14. BassiriRad H., Tremmel D.C., Virginia R.A., Reynolds J.F., Soyza A.G.d., Brunell M.H. (1999) Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain, Plant Ecol. 145, 27–36.CrossRefGoogle Scholar
  15. Bélanger G., Walsh J.R., Richards J.E., Milburn P.H., Ziadi N. (2001) Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada, Am. J. Potato Res. 78, 355–364.CrossRefGoogle Scholar
  16. Berni J.A.J., Zarco-Tejada P.J., Sepulcre-Cantó G., Fereres E., Villalobos F. (2009) Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery, Remote Sens. Environ. (to be published).Google Scholar
  17. Bhat K.K.S. (1982) Nutrient inflows into apple roots. II. — Nitrate uptake rates measured on intact roots of mature trees under field conditions, Plant Cell Environ. 5, 461–469.CrossRefGoogle Scholar
  18. Bloom A.J., Sukrapanna S.S., Warner R.L. (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by Barley, Plant Physiol. 99, 1294–1301.PubMedCrossRefGoogle Scholar
  19. Bradford K.J., Hsiao T.C. (1982) Physiological responses to moderate water stress, in: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (Eds.), Physiological plant ecology II. Water realtions and carbon assimilation. Springer-Verlag, Berlin, pp. 263–324.Google Scholar
  20. Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussière F., Cabidoche Y.M., Cellier P., Debaeke P., Gaudillère J.P., Hénault C., Maraux F., Seguin B., Sinoquet H. (2003) An overview of the crop model STICS, Eur. J. Agron. 18, 309–332.CrossRefGoogle Scholar
  21. Brisson N., Launay M., Mary B., Beaudoin N. (2009) Conceptual basis, formalisations and parameterization of the STICS crop model, Quae, Versailles.Google Scholar
  22. Broadley M.R., A.J. Escobar-Gutierrez, Burns A., Burns I.G. (2001) Nitrogen-limited growth of lettuce is associated with lower stomatal conductance, New Phytol. 152, 97–106.CrossRefGoogle Scholar
  23. Buljovcic Z., Engels C. (2001) Nitrate uptake ability by maize roots during and after drought stress, Plant Soil 229, 125–135.CrossRefGoogle Scholar
  24. Cantero-Martinez C., Villar J.M., Romagosa I., Fereres E. (1995) Nitrogen fertilization of barley under semi-arid rainfed conditions, Eur. J. Agron. 4, 309–316.Google Scholar
  25. Cartelat A., Cerovic Z.G., Goulas Y., Meyer S., Lelarge C., Prioul J.L., Barbottin A., Jeuffroy M.H., Gate P., Agati G., Moya I. (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.), Field Crop. Res. 91, 35–49.CrossRefGoogle Scholar
  26. Cassman K.G., (2001) Science research to assure food security, in: Nösberger J., Geiger H.H., Struik P.C. (Eds.), Crop Science and Prospect, CABI Publishing, pp. 33–42.Google Scholar
  27. Celette F., Wery J., Chantelot E., Celette J., Gary C. (2005) Belowground interactions in a vine (Vitis vinifera L.)-tall fescue (Festuca arundinacea Shreb.) intercropping system: Water relations and growth, Plant Soil 276, 205–217.CrossRefGoogle Scholar
  28. Ciompi S., Gentili E., Guidi L., Soldatini G.F. (1996) The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower, Plant Sci. 118, 177–184.CrossRefGoogle Scholar
  29. Colnenne C., Meynard J.M., Reau R., Justes E., Merrien A. (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape, Ann. Bot. 81, 311–317.CrossRefGoogle Scholar
  30. Correia M.J., Fonseca F., Azedo-Silva J., Dias C., David M.M., Barrote I., Osório M.L., Osório J., (2005) Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes, Physiol. Plantarum 124, 61–70.CrossRefGoogle Scholar
  31. Cowan I.R., (1982) Economics of carbon fixation in higher plants, in: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 133–171.Google Scholar
  32. De Wit C.T., Van Keulen H. (1972) Simulation of transport processes in soils, Centre for Agricultural Publishing and Documentation Wageningen, Wageningen, Netherlands.Google Scholar
  33. Devienne-Barret F., Justes E., Machet J.M., Mary B. (2000) Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions, Ann. Bot. 86, 995–1005.CrossRefGoogle Scholar
  34. Diouf O., Brou Y.C., Diouf M., Sarr B., Eyletters M., Roy-Macauley H., Delhaye J.P. (2004) Response of pearl millet to nitrogen as affected by water deficit, Agronomie 24, 77–84.CrossRefGoogle Scholar
  35. Dixon H.H., Joly J. (1895) On the ascent of sap, Philos. T. Roy. Soc. 186, 563–576.CrossRefGoogle Scholar
  36. Doussan C., Pagés L., Pierret A. (2003) Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view, Agronomie 23, 419–431.CrossRefGoogle Scholar
  37. Dreccer M.F. (2005) Nitrogen use at the leaf and canopy level: a framework to improve crop N use efficiency, J. Crop Improv. 15, 97–125.CrossRefGoogle Scholar
  38. Durand J.L. (1994) Response of morphogenesis to water deficits and competition, in: Sinoquet H., Cruz P. (Eds.), Ecophysiology of tropical intercropping, INRA, Paris, pp. 257–274.Google Scholar
  39. Durand J.L., Lemaire G., Gosse G., Chartier M. (1989) Analyse de la conversion de l’énergie solaire en maitère sèche par un peuplement de luzene (Medicago sativa L.) soumis à un déficit hydrique, Agronomie 9, 599–607.CrossRefGoogle Scholar
  40. Durand J.L., Onillon B., Schnyder H., Rademacher I. (1995) Drought effects on cellular and spatial parameters of leaf growth in tall fescue, J. Exp. Bot. 46, 1147–1155.CrossRefGoogle Scholar
  41. Durand J.L., Varlet-Grancher C., Lemaire G., Gastal F., Moulia B. (1991) Carbon partitioning in forage crops, Acta Biotheor. 39, 213–224.CrossRefGoogle Scholar
  42. Duru M. (2004) Simplified nitrogen assessment of orchardgrass swards, Agron. J. 96, 1598–1605.CrossRefGoogle Scholar
  43. Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R., Mearns L.O. (2000) Climate extremes: Observations, Modeling, and Impacts, Science 289, 2068–2074.PubMedCrossRefGoogle Scholar
  44. Egli D.B. (2004) Seed-fill duration and yield of grain crops, Adv. Agron. 83, 243–279.CrossRefGoogle Scholar
  45. Engels C., Mollenkopf M., Marschner H. (1994) Effect of drying and rewetting the topsoil on root growth of maize and rape in different soil types, Z. Pflanzenernähr. Bodenk. 157, 139–144.CrossRefGoogle Scholar
  46. Evans J.R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia 78, 9–19.CrossRefGoogle Scholar
  47. Fan X.L., Li Y.K. (2001) Effect of drought stress and drought tolerancec heredity on nitrogen efficiency of winter wheat, in: Horst W.W.J., Schenk M.K., Burkert A., Claasen N., Flessa H., Frommer W.B., Goldbach H.E., Olfs H.-W., Romheld W., Sattelmacher B., Schmidhalter U., Schubert S., von Wiren N., Wittenmayer L. (Eds.), Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems, American Society of Agronomy, Madison, USA, pp. 62–63.Google Scholar
  48. Farruggia A., Gastal F., Scholefield D. (2004) Assessment of the nitrogen status of grassland, Grass Forage Sci. 59, 113–120.CrossRefGoogle Scholar
  49. Field, C., Mooney H.A. (1986) The photosynthesis-nitrogen relationship in wild plants, in: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 25–55.Google Scholar
  50. Fierer N., Schimel J.P. (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations, Soil Biol. Biochem. 34, 777–787.CrossRefGoogle Scholar
  51. Fischer R.A., Hagan R.M. (1965) Plant water relations, irrigation management and crop yield, Exp. Agr. 1, 161–177.CrossRefGoogle Scholar
  52. Gajri P.R., Prihar S.S., Arora V.K. (1993) Interdependence of nitrogen and irrigation effects on growth and input-use efficiencies in wheat, Field Crop. Res. 31, 71–86.CrossRefGoogle Scholar
  53. Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions, Science 320, 889–892.PubMedCrossRefGoogle Scholar
  54. Gamon J.A., Peñuelas J., Field C.B. (1992) A narrow-wave band spectral index that track diurnal changes in photosynthetic efficiency, Remote Sens. Environ. 41, 35–44.CrossRefGoogle Scholar
  55. Gardner W.R. (1960) Dynamic aspects of water availability to plants, Soil Sci. 89, 63–73.CrossRefGoogle Scholar
  56. Garwood E.A., Tyson K.C., Sinclair J. (1979) Use of water by six grass species. 1. Dry-matter yields and response to irrigation, J. Agr. Sci. 93, 13–24.CrossRefGoogle Scholar
  57. Garwood E.A., Williams T.E. (1967) Growth, water use and nutrient uptake from the subsoil by grass swards, J. Agr. Sci. 69, 125–130.CrossRefGoogle Scholar
  58. Gastal F., Lemaire G. (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective, J. Exp. Bot. 53, 789–799.PubMedCrossRefGoogle Scholar
  59. Gastal F., Saugier B. (1989) Relationships between nitrogen uptake and carbon assimilation in whole plants of tall fescue, Plant Cell Environ. 12, 407–418.CrossRefGoogle Scholar
  60. Ghashghaie J., Saugier B. (1989) Effects of nitrogen deficiency on leaf photosynthetic response of tall fescue to water deficit, Plant Cell Environ. 12, 261–271.CrossRefGoogle Scholar
  61. Giorgi F., Bi X. (2005) Regional changes in surface climate interannual variability for the 21th century from ensembles of global model simulations, Geophys. Res. Lett. 32.Google Scholar
  62. Glass A.D.M., Britto D.T., Kaiser B.N., Kinghorn J.R., Kronzucker H.J., Kumar A., Okamoto M., Rawat S., Siddiqi M.Y., Unkles S.E., Vidmar J.J. (2002) The regulation of nitrate and ammonium transport systems in plants, J. Exp. Bot. 53, 855–864.PubMedCrossRefGoogle Scholar
  63. Gojon A., Passard C., Bussi C. (1994) Root/shoot distribution of NO3−1 assimilation in herbaceous and woody species, in: Roy R., Garnier E. (Eds.), A whole plant perspective on carbon-nitrogen interactions, SPB Academic Publishing, The Hague.Google Scholar
  64. Gollan T., Schurr U., Schulze E.D. (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus I. The concentration of cations anions, amino acids in, and pH of, the xylem sap, Plant Cell Environ. 15, 551–559.CrossRefGoogle Scholar
  65. Gonzalez-Dugo V. (2006) Effet du déficit hydrique sur l’état de nutrition azotée chez les graminées fourragères, University of Poitiers, France, 189.Google Scholar
  66. Gonzalez-Dugo V., Durand J.L., Gastal F., Picon-Cochard C. (2005) Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit, Aust. J. Agr. Res. 56, 1269–1276.CrossRefGoogle Scholar
  67. Gorissen A., Tietema A., Joosten N.N., Estiarte M., Peñuelas J., Sowerby A., Emmett B.A., Beier C. (2004) Climate change affects carbon allocation to the soil in shrublands, Ecosystems 7, 650–661.CrossRefGoogle Scholar
  68. Gosse G., Chartier M., Varlet-Granchet C., Bonhomme R. (1982) Interception du rayonnement utile à la photosynthèse chez la luzerne: Variations et modélisation, Agronomie 2, 583–588.CrossRefGoogle Scholar
  69. Greenwood D.J., Lemaire G., Gosse G., Cruz P., Draycott A., Neeteson J.J. (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass, Ann. Bot. 66, 425–436.Google Scholar
  70. Grubb P.J. (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition, Ann. Rev. Ecol. Syst. 8, 83–107.CrossRefGoogle Scholar
  71. Hardwick R.C. (1987) The nitrogen content of plants and the selfthinning rule of plant ecology: A test of the core-skin hypothesis, Ann. Bot. 60, 439–446.Google Scholar
  72. Herdel K., Schmidt P., Feil R., Mohr A., Schurr U. (2001) Dynamics of concentrations and nutrient fluxes in the xylem of Ricinus cummunis-diurnal course, impact of nutrient availability and nutrient uptake, Plant Cell Environ. 24, 41–52.CrossRefGoogle Scholar
  73. Hikosaka K., Terashima I., Katoh S. (1994) Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves, Oecologia 97, 451–457.CrossRefGoogle Scholar
  74. Hirose T., Werger M.J.A. (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy, Oecologia 72, 520–526.CrossRefGoogle Scholar
  75. Hopmans J.W., Bristow K.L. (2002) Current capabilities and future needs of root water and nutrient uptake modeling, Adv. Agron. 77, 103–183.CrossRefGoogle Scholar
  76. Huang B., Gao H. (2000) Root physiological characteristics associated with drought resistance in tall fescue cultivars, Crop Sci. 40, 196–203.CrossRefGoogle Scholar
  77. Hunt L.A., Pararajasingham S. (1995) CROPSIM — WHEAT: A model describing the growth and development of wheat, Can. J. Plant Sci. 75, 619–632.CrossRefGoogle Scholar
  78. Idso S., Jackson R., Pinter P.J.J., Reginato R., Hatfield J. (1981) Normalizing the stressdegree-day parameter for environmental variability, Agr. Meteorol. 24, 45–55.CrossRefGoogle Scholar
  79. Ingram K.T., Bueno F.D., Namuco O.S., Yambao E.B., Beyrouty C.A. (1994) Rice root traits for drought resistance and their genetic variation, Rice Roots: Nutrient and Water Use, 67–77.Google Scholar
  80. Jackson R., Idso S., Reginato R., Pinter P.J. (1981) Canopy temperature as a crop water stress indicator, Water Resour. Res. 17, 1133–1138.CrossRefGoogle Scholar
  81. Jacob J., Udayakumar M., Prasad T.G. (1995) Mesophyll conductance was inhibited more than stomatal conductance in nitrogen deficient plants, Plant Physiol. Bioch. 17, 55–61.Google Scholar
  82. Jeuffroy M.H., Ney B., Ourry A. (2002) Integrated physiological and agronomic modelling of N capture and use within the plant, J. Exp. Bot. 53, 809–823.PubMedCrossRefGoogle Scholar
  83. Jones C.A., Kiriny R. (1986) CERES-Maize: A Simulation Model of Maize Growth and Development, Texas A & M University Press, College Station.Google Scholar
  84. Jury W.A., Vaux J.H. (2005) The role of science in solving the world’s emerging water problems, PNAS 102, 15715–15720.PubMedCrossRefGoogle Scholar
  85. Justes E., Mary B., Meynard J.M., Machet J.M., Thelier-Huche L. (1994) Determination of a critical nitrogen dilution curve for winter wheat crops, Ann. Bot. 74, 397–407.CrossRefGoogle Scholar
  86. Keller M. (2005) Deficit irrigation and vine mineral nutrition, Am. J. Enol. Viticult. 56, 267–283.Google Scholar
  87. Kelliher F.M., Ross D.J., Law B.E., Baldocchi D.D., Rodda N.J. (2004) Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests, Forest Ecol. Manag. 191, 201–213.CrossRefGoogle Scholar
  88. Klepper B., Rickman R.W. (1990) Modeling crop growth and function, Adv. Agron. 44, 113–132.CrossRefGoogle Scholar
  89. Kovács G.J. (2005) Modelling of adaptation processes of crops to water and nitrogen stress, Phys. Chem. Earth 30, 209–216.Google Scholar
  90. Larsson M. (1992) Translocation of nitrogen in osmotically stressed wheat seedlings, Plant Cell Environ. 15, 447–453.CrossRefGoogle Scholar
  91. Larsson M., Larsson C.M., Whitford P.N., Clarkson D.T. (1989) Influence of osmotic stress on nitrate reductase activity in wheat (Triticum aestivum L.) and the role of abscisic acid, J. Exp. Bot. 40, 1265–1271.CrossRefGoogle Scholar
  92. Lawlor D.W., Cornic G. (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant Cell Environ. 25, 275–294.PubMedCrossRefGoogle Scholar
  93. Lawlor D.W., Young A.T., Keys A.J., Kendall A.C. (1987) Nitrate nutrition and temperature effects on wheat: photosynthesis and photorespiration of leaves, J. Exp. Bot. 38, 378–392.CrossRefGoogle Scholar
  94. Lemaire G., Denoix A. (1987) Croissance estivale en matière sèche de peuplements de fétuque élevée (Festuca arundinacea Schreb.) et de dactyle (Dactylis glomerata L.) dans l’Ouest de la France. II. Interaction entre les niveaux d’alimentation hydrique et de nutrition azotée, Agronomie 7, 381–389.CrossRefGoogle Scholar
  95. Lemaire G., Gastal F. (1997) N uptake and distribution in plant canopies, in: Lemaire G. (Ed.), Diagnosis on the nitrogen status in crops, Springer-Verlag, Heidelberg, pp. 3–43.Google Scholar
  96. Lemaire G., Gastal F. (2009) Quantifying Crop Responses to Nitrogen Deficiency anbd Avenues to improve Nitrogen Use Efficiency, in: Sadras V.O., Calderini D.F. (Eds.), Crop Physiology, Academic Press, Amsterdam, pp. 171–212.CrossRefGoogle Scholar
  97. Lemaire G., Meynard J.M. (1997) Use of the nitrogen nutrition index for the analysis of agronomical data, Diagnosis of the Nitrogen Status in Crops, 45–55.Google Scholar
  98. Lemaire G., Salette J. (1984) Rélation entre dynamique de croissance et dynamique de prélèvement d’azote pour un peuplement de graminées fourragères. I. Étude de l’effet du milieu, Agronomie 4, 423–430.CrossRefGoogle Scholar
  99. Lemaire G., Recous S., Mary B. (2004) Managing residues and nitrogen in intensive cropping systems. New understanding for efficient recovery by crops, in:. Fischer T., Turner N.C., Angus J.F., McIntyre L., Robertson M.J., Borrell A., Lloyd D. (Eds.), 4th International Crop Science Congress, The Regional Institute Ltd, Gosford, Brisbane (Australia), http://www.cropscience.org.au/icsc2004.Google Scholar
  100. Li S.X., Wang Z.H., Hu T.T., Gao Y.J., Stewart B.A. (2009) Chapter 3. Nitrogen in Dryland Soils of China and Its Management, in: Sparks D.L. (Ed.), Advances in Agronomy, pp. 123–181.Google Scholar
  101. Luxmoore R.J., Millington R.J. (1971) Growth of perennial ryegrass (Lolium perenne L.) in relation to water, nitrogen, and light intensity — II. Effects on dry weight production, transpiration and nitrogen uptake, Plant Soil 34, 561–574.CrossRefGoogle Scholar
  102. Macduff J.H., Jarvis S.C., Mosquera A. (1989) Nitrate nutrition of grasses from steady-state supplies in flowing solution culture following nitrate deprivation and/or defoliation. II. Assimilation of NO3 — and short-term effects on NO3 — uptake, J. Exp. Bot. 40, 977–984.CrossRefGoogle Scholar
  103. Malagoli P., Laine P., Rossato L., Ourry A. (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N, Ann. Bot. 95, 853–861.PubMedCrossRefGoogle Scholar
  104. Mambani B., Lal R. (1983) Response of upland rice varieties to drought stress — II. Screening rice varieties by means of variable moisture regimes along a toposequence, Plant Soil 73, 73–94.CrossRefGoogle Scholar
  105. Matzner S.L., Richards J.H. (1996) Sagebrush (Artemisia tridentata Nutt.) roots maintain nutrient uptake capacity under water stress, J. Exp. Bot. 47, 1045–1056.CrossRefGoogle Scholar
  106. Mazzarino M.J., Bertiller M.B., Sain C., Satti P., Coronato F. (1998) Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes, Plant Soil 202, 125–131.CrossRefGoogle Scholar
  107. Mistele B., Schmidhalter U. (2008) Estimating the nitrogen nutrition index using spectral anatomy reflectance measurements, Eur. J. Agron. 29, 184–190.CrossRefGoogle Scholar
  108. Morgan J.A. (1984) Interaction of water supply and nitrogen in wheat, Plant Physiol. 76, 112–117.PubMedCrossRefGoogle Scholar
  109. Ney B., Doré T., Sagan M. (1997) The nitrogen requirement of major agricultural crops: Grain legumes, Diagnosis of the Nitrogen Status in Crops, 107–118.Google Scholar
  110. Nicolas M.E., Simpson R.J., Lambers H., Dalling M.J. (1985) Effects of drought on partitioning of nitrogen in two wheat varieties differing in drought tolerance, Ann. Bot. 55, 743–754.Google Scholar
  111. Nielsen D.C., Halvorson A.D. (1991) Nitrogen fertility influence on water stress and yield of winter wheat, Agron. J. 83, 1065–1070.CrossRefGoogle Scholar
  112. O’Leary G.J., Connor D.J. (1996) A simulation model of the wheat crop in response to water and nitrogen supply: I. Model construction, Agr. Syst. 52, 1–29.CrossRefGoogle Scholar
  113. O’Toole J.C. (1982) Adaptation of rice to drought-prone environments. Drought resistance in crops with the emphasis on rice, IRRI, Manila, pp. 71–82.Google Scholar
  114. Onillon B. (1993) Effets d’une contrainte hydrique édaphique sur la croissance de la fétuque élevée soumise à différents niveaux de nutrition azotée. Étude à l’echelle foliaire et à celle du couvert végétal, University of Poitiers.Google Scholar
  115. Onillon B., Durand J.L., Gastal F., Tournebize R. (1995) Drought effects on growth and carbon partitioning in a tall fescue sward grown at different rates of nitrogen fertilization, Eur. J. Agron. 4, 91–99.Google Scholar
  116. Overman A.R., Robinson D., Wilkinson S.R. (1995) Coupling of dry matter and nitrogen accumulation in ryegrass, Fertil. Res. 40, 105–108.CrossRefGoogle Scholar
  117. Palta J.A., Kobata T., Turner N.C., Fillery I.R. (1994) Remobilization of Carbon and Nitrogen in Wheat as Influenced by Postanthesis Water Deficits, Crop Sci. 34, 118–124.CrossRefGoogle Scholar
  118. Passioura J. (1963) A mathematical model for the uptake of ions from the soil solution, Plant Soil 18, 225–238.CrossRefGoogle Scholar
  119. Pastor J., Post W.M. (1985) Development of a linked forest productivitysoil process model, Oak Ridge National Laboratory.Google Scholar
  120. Peuke A.D., Rokitta M., Zimmermann U., Schreiber L., Haase A. (2001) Simultaneous measurement of water flow velocity and solute transport in xilem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry, Plant, Cell Environ. 24, 491–503.CrossRefGoogle Scholar
  121. Phillip J.R. (1966) Plant water relations: some physical aspects, Annu. Rev. Plant Phys. 17, 245–268.CrossRefGoogle Scholar
  122. Pierret A., Doussan C., Capowiez Y., Bastardie F., Pagès L. (2007) Root functional architecture: A framework for modeling the interplay between roots and soil, Vadose Zone Journal 6, 269–281.CrossRefGoogle Scholar
  123. Pierret A., Moran C.J., Doussan C. (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots, New Phytol. 166, 967–980.PubMedCrossRefGoogle Scholar
  124. Pirmoradian N., Sepaskhah A.R., Maftoun M. (2004) Deficit irrigation and nitrogen effects on nitrogen-use efficiency and grain protein of rice, Agronomie 24, 143–153.CrossRefGoogle Scholar
  125. Plénet D., Lemaire G. (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops, Determination of critical N concentration, Plant Soil 216, 65–82.CrossRefGoogle Scholar
  126. Porporato A., D’Odorico P., Laio F., Rodriguez-Iturbe I. (2003) Hydrologic controls on soil carbon and nitrogen cycles I. Modeling scheme, Adv. Water Resour. 26, 45–58.CrossRefGoogle Scholar
  127. Porter J.R. (1993) AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to water and nitrogen, Eur. J. Agron. 2, 69–82.Google Scholar
  128. Pulleman M., Tietema A. (1999) Microbial C and N transformations during drying and rewetting of coniferous forest floor material, Soil Biol. Biochem. 31, 275–285.CrossRefGoogle Scholar
  129. Radin J.W., Parker L.L. (1979) Water relations of cotton plants under nitrogen deficiency. II. Environmental interactions on stomata, Plant Physiol. 64, 499–501.PubMedCrossRefGoogle Scholar
  130. Rao K.P., Rains D.W. (1976) Nitrate absorption by barley. I. Kinetics and energetics, Plant Physiol. 57, 55–58.PubMedCrossRefGoogle Scholar
  131. Raven J.A. (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water, New Phytol. 101, 25–77.CrossRefGoogle Scholar
  132. Raynaud X. (2004) Interactions compétitives spatialisées dans le sols: une approche par modélisation des interactions entre les plantes et les micro-organismes du sol, Université de Paris-Sud.Google Scholar
  133. Rodriguez D., Robson A.J., Belford R. (2009) Dynamic and functional monitoring technologies for applications in crop management, in: Sadras V.O., Calderini D.F. (Eds.), Crop Physiology, Academic Press, Amsterdam, pp. 489–510.CrossRefGoogle Scholar
  134. Saab I.N., Sharp R.E., Pritchard J., Voetberg G.S. (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials, Plant Physiol. 93, 1329–1336.PubMedCrossRefGoogle Scholar
  135. Sadras V.O. (2005) A quantitative top-down view of interactions between stresses: theory and analysis of nitrogen-water co-limitation in Mediterranean agro-ecosystems, Aust. J. Agr. Res. 56, 1151–1157.CrossRefGoogle Scholar
  136. Scheurwater I., Koren M., Lambers H., Atkin O.K. (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species, J. Exp. Bot. 53, 1635–1642.PubMedCrossRefGoogle Scholar
  137. Schimel J.P., Gulledge J.M., Clein-Curley J.S., Lindstrom J.E., Braddock J.F. (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga, Soil Biol. Biochem. 31, 831–838.CrossRefGoogle Scholar
  138. Schnyder H. (1993) The role of carbohydrate storage and redistribution in the source — sink relations of wheat and barley during grain filling — a review, New Phytol. 123, 233–245.CrossRefGoogle Scholar
  139. Scholes M.C., Martin R., Scholes R.J., Parsons D., Winstead E. (1997) NO and N2O emissions from savanna soils following the first simulated rains of the season, Nutr. Cycl. Agroecosys. 48, 115–122.CrossRefGoogle Scholar
  140. Schulze E.D., Bloom A.J. (1984) Relationship between mineral nitrogen influx and transpiration in radish and tomato, Plant Physiol. 76, 827–828.PubMedCrossRefGoogle Scholar
  141. Schurr U., Schulze E.D. (1996) Effects of drought on nutrient and ABA transport in Ricinus communis, Plant Cell Environ. 19, 665–674.CrossRefGoogle Scholar
  142. Sharp R.E., Silk W.K., Hsiao T.C. (1988) Growth of the primary root at low water potentials, Plant Physiol. 87, 50–57.PubMedCrossRefGoogle Scholar
  143. Sheehy J. (2001) Will yield barriers limit future rice production? in: Nösberger J., Geiger H.H., Struik P.C. (Eds.), Crop Science and Prospect, CABI Publishing, pp. 281–306.Google Scholar
  144. Siddiqi M.Y., Glass A.D.M., Ruth T.J., Rufti J.T.W. (1990) Studies of the uptake of nitrate in Barley, Plant Physiol. 93, 1426–1432.PubMedCrossRefGoogle Scholar
  145. Sinclair T.R. (1986) Water and nitrogen limitations in soybean grain production. I. Model development, Field Crop. Res. 15, 125–141.CrossRefGoogle Scholar
  146. Singh A.K., Tripathy R., Chopra U.K. (2008) Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop, Agr. Water Manage. 95, 776–786.CrossRefGoogle Scholar
  147. Smolander A., Barnette L., Kitunen V., Lumme I. (2005) N and C transformations in long-term N-fertilized forest soils in response to seasonal drought, Appl. Soil Ecol. 29, 225–235.CrossRefGoogle Scholar
  148. Stevens C.J., Dise N.B., Mountford J.O., Gowing D.J. (2004) Impact of Nitrogen Deposition on the Species Richness of Grasslands, Science 303, 1876–1879.PubMedCrossRefGoogle Scholar
  149. Stöckle C.O., Donatelli M., Nelson R. (2003) CropSyst, a cropping systems simulation model, Eur. J. Agron. 18, 289–307.CrossRefGoogle Scholar
  150. Stöckle C.O., Martin S.A., Campbell G.S. (1994) CropSyst, a cropping system simulation model: water/nitrogen budgets and crop yield, Agr. Syst. 46, 335–359.CrossRefGoogle Scholar
  151. Streeter J.G. (2003) Effects of drought on nitrogen fixation in soybean root nodules, Plant Cell Environ. 26, 1199–1204.CrossRefGoogle Scholar
  152. Suárez L., Zarco-Tejada P.J., Berni J.A.J., Gonzalez-Dugo V., Fereres E. (2009) Modelling PRI for water stress detection using radiative transfer models, Remote Sens. Environ. 113, 730–744.CrossRefGoogle Scholar
  153. Talouizite A., Champigny M.L. (1988) Response of wheat seedlings to short-term drought stress with particular respect to nitrate utilisation, Plant Cell Environ. 11, 149–155.CrossRefGoogle Scholar
  154. Tanner W., Beevers H. (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? PNAS 98, 9443–9447.PubMedCrossRefGoogle Scholar
  155. Thomas M., Robertson M.J., Fukai S., Peoples M.B. (2004) The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean, Field Crop. Res. 86, 67–80.CrossRefGoogle Scholar
  156. Tischner R. (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23, 1005–1024.CrossRefGoogle Scholar
  157. Triboi-Blondel A.-M. (1978) Effets de différents régimes d’alimentation hydrique sur l’activité in vivo de la nitrate-reductase, C.R. Acad. Sci. Paris 286, 1795–1798.Google Scholar
  158. Triboi-Blondel A.-M. (1979) Dynamique comparée de l’absorption des nitrates et de l’eau par des plantules de blé, C.R. Acad. Sci. Paris 288, 1545–1548.Google Scholar
  159. Tyree M.T., Cochard H. (2003) Vessel contents of leaves after excision: a test of the scholander assumption, J. Exp. Bot. 54, 2133–2139.PubMedCrossRefGoogle Scholar
  160. Uhart S.A., Andrade F.H. (1995) Nitrogen Defeciency in Maize: I. Effects on Crop Growth, Development, Dry Matter Partitioning, and Kernel Set, Crop Sci. 35, 1376–1383.CrossRefGoogle Scholar
  161. Valé M., Mary B., Justes E. (2007) Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions, Biol. Fert. Soils 43, 641–651.CrossRefGoogle Scholar
  162. Van Der Honert T.H. (1948) Water transport as a catenary process, Discuss. Faraday Soc. 3, 146–153.CrossRefGoogle Scholar
  163. Van Dobben W.H. (1962) Influence of temperature and light conditions on dry-matter distribution, develoment rate and yield in arable crops, Neth. J. Agr. Sci. 10, 377–389.Google Scholar
  164. Van Ittersum M.K., Leffelaar P.A., Van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. (2003) On approaches and applications of the Wageningen crop models, Eur. J. Agron. 18, 201–234.CrossRefGoogle Scholar
  165. Van Keulen H. (1981) Modelling the interaction of water and nitrogen, Plant Soil 58, 205–229.CrossRefGoogle Scholar
  166. Van Keulen H., Seligman N.G. (1987) Simulation of water use, nitrogen nutrition and growth of a spring wheat crop, Pudoc, Wageningen.Google Scholar
  167. Wei C., Steudle E., Tyree M.T. (1999) Water ascent in plants: Do ongoing controversies have a sound basis? Trends Plant Sci. 4, 372–375.PubMedCrossRefGoogle Scholar
  168. Westerman R.L., Tucker T.C. (1978) Denitrification in desert soils, Nitrogen in Desert Ecosystems, 75–106.Google Scholar
  169. White C.S., Moore D.I., Craig J.A. (2004) Regional-scale drought increases potential soil fertility in semiarid grasslands, Biol. Fert. Soils 40, 73–78.CrossRefGoogle Scholar
  170. Williams M., Yanai R.D. (1996) Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model, Plant Soil 180, 311–324.CrossRefGoogle Scholar
  171. Wu Y., Sharp R.E., Durachko D.M., Cosgrove D.J. (1996) Growth Maintenance of the Maize Primary Root at Low Water Potentials Involves Increases in Cell-Wall Extension Properties, Expansin Activity, and Wall Susceptibility to Expansins, Plant Physiol. 111, 765–772.PubMedGoogle Scholar
  172. Yamauchi A., Paradales Jr J.R., Kono Y. (1996) Root system structure and its relation to stress tolerance, in: Ito O., Katayama K., Johansen J.V.D.K., Kumar Rao J.J. (Eds.), Root and nitrogen in cropping systems of the semiarid tropics, Cultio Corporation, Tsukuba, Japan, pp. 211–233.Google Scholar
  173. Zwieniecki M.A., Melcher P.J., Holbrook N.M. (2001) Hidrogel control of xilem hydraulic resistance in plants, Science 291, 1059–1062.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Victoria Gonzalez-Dugo
    • 1
    • 2
    Email author
  • Jean-Louis Durand
    • 2
  • François Gastal
    • 2
  1. 1.Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones CientíficasIAS-CSICCórdobaSpain
  2. 2.Unité de Recherche Pluridisciplinaire sur les prairies et les plantes fourragèresINRALusignanFrance

Personalised recommendations