Skip to main content

Advertisement

Log in

Contrasting weed species composition in perennial alfalfas and six annual crops: implications for integrated weed management

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Weed communities are most strongly affected by the characteristics and management of the current crop. Crop rotation may thus be used to prevent the repeated selection of particular weed species. While weed communities are frequently compared among annual crops, little is known about the differences between annual and perennial crops that may be included in the rotations. Moreover, nearly all existing studies (17 articles reviewed) are based on local field experiments rather than commercial fields. We compared the weed composition in perennial alfalfas (Medicago sativa) and six annual crops: winter wheat (Triticum aestivum), oilseed rape (Brassica napus), pea (Pisum sativum), sunflower (Helianthus annuus), maize (Zea mays) and sorghum (Sorghum bicolor) using data from 632 commercial fields in western France. Weed species composition showed the strongest dissimilarities between perennial alfalfas and all annual crops, followed by the well-known differences between autumn- and spring/summer-sown annual crops. Indicator Species Analysis showed that most weed species either preferred perennial alfalfas (including Taraxacum officinale, Veronica persica, Crepis spp., Poa trivialis, Silene latifolia, Capsella bursapastoris and Picris spp.) or annual crops (including Mercurialis annua, Galium aparine, Fallopia convolvulus, Chenopodium album and Cirsium arvense). Perennial alfalfas thus suppressed many weeds that are widespread (and sometimes problematic) in annual crops while favouring other species. Shifted weed composition and reduced frequency of several noxious weeds suggest that perennial alfalfas may be used as a valuable part of integrated weed management, reducing the need for herbicides and sustaining plant and animal diversity in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht H. (2005) Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming, Weed Res. 45, 339–350.

    Article  Google Scholar 

  • Andersson T.N., Milberg P. (1996) Weed performance in crop rotations with and without leys and at different nitrogen levels, Ann. Appl. Biol. 128, 505–518.

    Article  Google Scholar 

  • Andersson T.N., Milberg P. (1998) Weed flora and the relative importance of site, crop, crop rotation, and nitrogen, Weed Sci. 46, 30–38.

    CAS  Google Scholar 

  • Bellinder R.R., Dillard H.R., Shah D.A. (2004) Weed seedbank community responses to crop rotation schemes, Crop Prot. 23, 95–101.

    Article  Google Scholar 

  • Belyea L.R., Lancaster J. (1999) Assembly rules within a contingent ecology, Oikos 86, 402–416.

    Article  Google Scholar 

  • Cardina J., Herms C.P., Doohan D.J. (2002) Crop rotation and tillage system effects on weed seedbanks, Weed Sci. 50, 448–460.

    Article  CAS  Google Scholar 

  • Cavigelli M.A., Teasdale J.R., Conklin A.E. (2008) Long-term agronomic performance of organic and conventional field crops in the mid-Atlantic region, Agron. J. 100, 785–794.

    Article  CAS  Google Scholar 

  • Clarke K.R. (1993) Non-parametric multivariate analyses of changes in community structure, Austral Ecol. 18, 117–143.

    Article  Google Scholar 

  • Clay S.A., Aguilar I. (1998) Weed seedbanks and corn growth following continuous corn or alfalfa, Agron. J. 90, 813–818.

    Article  Google Scholar 

  • Colwell R.K., Coddington J.A. (1994) Estimating terrestrial Biodiversity through extrapolation, Philos. T. Roy. Soc. B 345, 101–118.

    Article  CAS  Google Scholar 

  • Doucet C., Weaver S.E., Hamill A.S., Zhang J.H. (1999) Separating the effects of crop rotation from weed management on weed density and diversity, Weed Sci. 47, 729–735.

    CAS  Google Scholar 

  • Dufrene M., Legendre P. (1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach, Ecol. Monogr. 67, 345–366.

    Google Scholar 

  • Entz M.H., Baron V.S., Carr P.M., Meyer D.W., Smith S.R., McCaughey W.P. (2002) Potential of forages to diversify cropping systems in the northern Great Plains, Agron. J. 94, 240–250.

    Article  Google Scholar 

  • Entz M.H., Bullied W.J., KatepaMupondwa F. (1995) Rotational benefits of forage crops in Canadian prairie cropping systems, J. Prod. Agric. 8, 521–529.

    Google Scholar 

  • Freyer B. (2003) Fruchtfolgen Ulmer, Stuttgart-Hohenheim, Germany.

    Google Scholar 

  • Fried G., Norton L.R., Reboud X. (2008) Environmental and management factors determining weed species composition and diversity in France, Agr. Ecosys. Environ. 128, 68–76.

    Article  Google Scholar 

  • Gerowitt B., Bertke E., Hespelt S.K., Tute C. (2003) Towards multifunctional agriculture — weeds as ecological goods? Weed Res. 43, 227–235.

    Article  Google Scholar 

  • Gill G.S., Holmes J.E. (1997) Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum, Pestic. Sci. 51, 352–358.

    Article  CAS  Google Scholar 

  • Gosse G., Lemaire G., Chartier M., Balfourier F. (1988) Structure of a lucerne population (Medicago sativa L.) and dynamics of stem competition for light during regrowth, J. Appl. Ecol. 25, 609–617.

    Article  Google Scholar 

  • Gotelli N.J., Colwell R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness, Ecol. Lett. 4, 379–391.

    Article  Google Scholar 

  • Graglia E., Melander B., Jensen R.K. (2006) Mechanical and cultural strategies to control Cirsium arvense in organic arable cropping systems, Weed Res. 46, 304–312.

    Article  Google Scholar 

  • Hald A.B. (1999) The impact of changing the season in which cereals are sown on the diversity of the weed flora in rotational fields in Denmark, J. Appl. Ecol. 36, 24–32.

    Article  Google Scholar 

  • Heggenstaller A.H., Liebman M. (2006) Demography of Abutilon theoprasti and Setaria faberi in three crop rotation systems, Weed Res. 46, 138–151.

    Article  Google Scholar 

  • Hiltbrunner J., Scherrer C., Streit B., Jeanneret P., Zihlmann U., Tschachtli R. (2008) Long-term weed community dynamics in Swiss organic and integrated farming systems, Weed Res. 48, 360–369.

    Article  Google Scholar 

  • Holland J.M., Hutchison M.A.S., Smith B., Aebischer N.J. (2006) A review of invertebrates and seed-bearing plants as food for farmland birds in Europe, Ann. Appl. Biol. 148, 49–71.

    Article  Google Scholar 

  • Huarte H.R., Arnold R.L.B. (2003) Understanding mechanisms of reduced annual weed emergence in alfalfa, Weed Sci. 51, 876–885.

    Article  CAS  Google Scholar 

  • Katsvairo T.W., Wright D.L., Marois J.J., Hartzog D.L., Rich J.R., Wiatrak P.J. (2006) Sod-Livestock Integration into the Peanut-Cotton Rotation: A Systems Farming Approach, Agron. J. 98, 1156–1171.

    Article  Google Scholar 

  • Kenkel N.C., Derksen D.A., Thomas A.G., Watson P.R. (2002) Multivariate analysis in weed science research, Weed Sci. 50, 281–292.

    Article  CAS  Google Scholar 

  • Khanh T.D., Chung M.I., Xuan T.D., Tawata S. (2005) The Exploitation of Crop Allelopathy in Sustainable Agricultural Production, J. Agron. Crop Sci. 191, 172–184.

    Article  Google Scholar 

  • Liebman M., Davis A.S. (2000) Integration of soil, crop and weed management in low-external-input farming systems, Weed Res. 40, 27–47.

    Article  Google Scholar 

  • Liebman M., Dyck E. (1993) Crop-Rotation and Intercropping Strategies for Weed Management, Ecol. Appl. 3, 92–122.

    Article  Google Scholar 

  • Marshall E.J.P., Brown V.K., Boatman N.D., Lutman P.J.W., Squire G.R., Ward L.K. (2003) The role of weeds in supporting biological diversity within crop fields, Weed Res. 43, 77–89.

    Article  Google Scholar 

  • Meiss H., Munier-Jolain N., Henriot F., Caneill J. (2008) Effects of biomass, age and functional traits on regrowth of arable weeds after cutting, J. Plant Dis. Prot. XXI, 493–499.

    Google Scholar 

  • Murphy S.D., Clements D.R., Belaoussoff S., Kevan P.G., Swanton C.J. (2006) Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation, Weed Sci. 54, 69–77.

    Article  CAS  Google Scholar 

  • Nazarko O.M., Van Acker R.C., Entz M.H. (2005) Strategies and tactics for herbicide use reduction in field crops in Canada: A review, Can. J. Plant Sci. 85, 457–479.

    Article  Google Scholar 

  • Norris R.F., Ayres D. (1991) Cutting Interval and Irrigation Timing in Alfalfa: Yellow Foxtail Invasion and Economic Analysis, Agron. J. 83, 552–558.

    Article  Google Scholar 

  • Oksanen J., Kindt R., Legendre P., O’Hara B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. (2009) vegan: Community Ecology Package, R package version 1.15-3.

  • Ominski P.D., Entz M.H., Kenkel N. (1999) Weed suppression by Medicago sativa in subsequent cereal crops: a comparative survey, Weed Sci. 47, 282–290.

    CAS  Google Scholar 

  • R Development Core Team (2008) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Roberts H.A. (1984) Crop and weed emergence patterns in relation to time of cultivation and rainfall, Ann. Appl. Biol. 105, 263–275.

    Article  Google Scholar 

  • Schoofs A., Entz M.H. (2000) Influence of annual forages on weed dynamics in a cropping system, Can J. Plant Sci. 80, 187–198.

    Article  Google Scholar 

  • Sjursen H. (2001) Change of the weed seed bank during the first complete six-course crop rotation after conversion from conventional to organic farming, Biol. Agric. Hortic. 19, 71–90.

    Google Scholar 

  • Smith R.G., Gross K.L. (2007) Assembly of weed communities along a crop diversity gradient, J. Appl. Ecol. 44, 1046–1056.

    Article  Google Scholar 

  • Sosnoskie L.M., Herms N.P., Cardina J. (2006) Weed seedbank community composition in a 35-yr-old tillage and rotation experiment, Weed Sci. 54, 263–273.

    CAS  Google Scholar 

  • Teasdale J.R., Mangum R.W., Radhakrishnan J., Cavigelli M.A. (2004) Weed seedbank dynamics in three organic farming crop rotations, Agron. J. 96, 1429–1435.

    Article  Google Scholar 

  • Tilman D., Hill J., Lehman C. (2006) Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass, Science 314, 1598–1600.

    Article  PubMed  CAS  Google Scholar 

  • Westerman P.R., Liebman M., Menalled F.D., Heggenstaller A.H., Hartzler R.G., Dixon P.M. (2005) Are many little hammers effective? — Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems, Weed Sci. 53, 382–392.

    Article  CAS  Google Scholar 

  • Zanin G., Otto S., Riello L., Borin M. (1997) Ecological interpretation of weed flora dynamics under different tillage systems, Agr. Ecosys. Environ. 66, 177–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Munier-Jolain.

About this article

Cite this article

Meiss, H., Médiène, S., Waldhardt, R. et al. Contrasting weed species composition in perennial alfalfas and six annual crops: implications for integrated weed management. Agron. Sustain. Dev. 30, 657–666 (2010). https://doi.org/10.1051/agro/2009043

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro/2009043

Navigation