Agronomy for Sustainable Development

, Volume 30, Issue 2, pp 237–269 | Cite as

Cereal landraces for sustainable agriculture. A review

  • A. C. Newton
  • T. Akar
  • J. P. Baresel
  • P. J. Bebeli
  • E. Bettencourt
  • K. V. Bladenopoulos
  • J. H. Czembor
  • D. A. Fasoula
  • A. Katsiotis
  • K. Koutis
  • M. Koutsika-Sotiriou
  • G. Kovacs
  • H. Larsson
  • M. A. A. Pinheiro de Carvalho
  • D. Rubiales
  • J. Russell
  • T. M. M. Dos Santos
  • M. C. Vaz Patto
Review article

Abstract

Modern agriculture and conventional breeding and the liberal use of high inputs has resulted in the loss of genetic diversity and the stagnation of yields in cereals in less favourable areas. Increasingly landraces are being replaced by modern cultivars which are less resilient to pests, diseases and abiotic stresses and thereby losing a valuable source of germplasm for meeting the future needs of sustainable agriculture in the context of climate change. Where landraces persist there is concern that their potential is not fully realised. Much effort has gone into collecting, organising, studying and analysing landraces recently and we review the current status and potential for their improved deployment and exploitation, and incorporation of their positive qualities into new cultivars or populations for more sustainable agricultural production. In particular their potential as sources of novel disease and abiotic stress resistance genes or combination of genes if deployed appropriately, of phytonutrients accompanied with optimal micronutrient concentrations which can help alleviate aging-related and chronic diseases, and of nutrient use efficiency traits.We discuss the place of landraces in the origin of modern cereal crops and breeding of elite cereal cultivars, the importance of on-farm and ex situ diversity conservation; how modern genotyping approaches can help both conservation and exploitation; the importance of different phenotyping approaches; and whether legal issues associated with landrace marketing and utilisation need addressing. In this review of the current status and prospects for landraces of cereals in the context of sustainable agriculture, the major points are the following: (1) Landraces have very rich and complex ancestry representing variation in response to many diverse stresses and are vast resources for the development of future crops deriving many sustainable traits from their heritage. (2) There are many germplasm collections of landraces of the major cereals worldwide exhibiting much variation in valuable morphological, agronomic and biochemical traits. The germplasm has been characterised to variable degrees and in many different ways including molecular markers which can assist selection. (3) Much of this germplasm is being maintained both in long-term storage and on farm where it continues to evolve, both of which have their merits and problems. There is much concern about loss of variation, identification, description and accessibility of accessions despite international strategies for addressing these issues. (4) Developments in genotyping technologies are making the variation available in landraces ever more accessible. However, high quality, extensive and detailed, relevant and appropriate phenotyping needs to be associated with the genotyping to enable it to be exploited successfully. We also need to understand the complexity of the genetics of these desirable traits in order to develop new germplasm. (5) Nutrient use efficiency is a very important criterion for sustainability. Landrace material offers a potential source for crop improvement although these traits are highly interactive with their environment, particularly developmental stage, soil conditions and other organisms affecting roots and their environment. (6) Landraces are also a potential source of traits for improved nutrition of cereal crops, particularly antioxidants, phenolics in general, carotenoids and tocol in particular. They also have the potential to improve mineral content, particularly iron and zinc, if these traits can be successfully transferred to improved varieties. (7) Landraces have been shown to be valuable sources of resistance to pathogens and there is more to be gained from such sources. There is also potential, largely unrealised, for disease tolerance and resistance or tolerance of pest and various abiotic stresses too including to toxic environments. (8) Single gene traits are generally easily transferred from landrace germplasm to modern cultivars, but most of the desirable traits characteristic of landraces are complex and difficult to express in different genetic backgrounds. Maintaining these characteristics in heterogeneous landraces is also problematic. Breeding, selection and deployment methods appropriate to these objectives should be used rather than those used for high input intensive agriculture plant breeding. (9) Participatory plant breeding and variety selection has proven more successful than the approach used in high input breeding programmes for landrace improvement in stress-prone environments where sustainable approaches are a high priority. Despite being more complex to carry out, it not only delivers improved germplasm, but also aids uptake and communication between farmers, researchers and advisors for the benefit of all. (10) Previous seed trade legislation was designed primarily to protect trade and return royalty income to modern plant breeders with expensive programmes to fund. As the desirability of using landraces becomes more apparent to achieve greater sustainability, legislation changes are being made to facilitate this trade too. However, more changes are needed to promote the exploitation of diversity in landraces and encourage their use.

diversity disease yield quality nutrition breeding genotyping competition cultivar degeneration whole-plant field phenotyping non-stop selection adaptive variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdellaoui R., M’Hamed H.C., Naceur M.B., Bettaïeb-Kaab L., Hamida J.B. (2007) Morpho-physiological and molecular characterization of some Tunisian barley ecotypes, Asian J. Plant Sci. 6, 261–268.CrossRefGoogle Scholar
  2. Abo-Elenin R.A., Heakal M.S., Gomaa A.S., Moseman J.G. (1981) Studies on salt tolerance in barley and wheat. Source of tolerance in barley germplasm, Barley Genet. IV, 402–409.Google Scholar
  3. Acevedo E., Fereres E. (1993) Resistance to abiotic stresses. in: Hayward M.D., Osemark N.O., Romagosa I. (Eds.), Plant Breeding and Prospects, Chapman & Hall, London, UK, pp. 406–421.Google Scholar
  4. Adom K.K., Liu R.H. (2002) Antioxidant activity of grains, J. Agr. Food Chem. 50, 6182–6187.CrossRefGoogle Scholar
  5. Afanasenko O.S., Terentyeva I.A., Makarova I.N. (2000) Landraces from Peru — new sources of resistance to net blotch of barley, Proceedings of the 8th International Barley Genetics Symposium, Adelaide, October 22–27 2000, Vol. II, pp. 71–72, Adelaide University, Australia.Google Scholar
  6. Akar T., Özgen M. (2007) Genetic Diversity in Turkish Durum Wheat Landraces, in: Wheat Production in Stressed Environments, Springer, Netherlands, 12, pp. 753–760.CrossRefGoogle Scholar
  7. Akar T., Francia E., Tondelli A., Rlzza F., Stanea A.M., Pecchioni N. (2009) Marker-assisted characterization of highly Frost Tolerant Barley (Hordeum vulgare L.) Genotypes, Plant Breeding 128, 381–386.CrossRefGoogle Scholar
  8. Akhkha A., Clarke D.D., Dominy P.J. (2003) Relative tolerances of wild and cultivated barley to infection by Blumeria graminis f.sp. hordei (Syn. Erysiphe graminis f.sp. hordei). II — the effects of infection on photosynthesis and respiration, Physiol. Mol. Plant. Path. 62, 347–354.CrossRefGoogle Scholar
  9. Alamerew S., Chebotar S., Huang X., Röder M., Börner A. (2004) Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed bymicrosatellite markers, Genet. Resour. Crop Ev. 51, 559–567.CrossRefGoogle Scholar
  10. Al Khanjari S., Hammer K., Buerkert A., Röder M.S. (2007) Molecular diversity of Omani wheat revealed by microsatellites: II. Hexaploid landraces, Genet. Resour. Crop Ev. 54, 1407–1417.CrossRefGoogle Scholar
  11. Alemayehu F., Parlevliet J.E. (1997) Variation between and within barley landraces, Euphytica 94, 183–189.CrossRefGoogle Scholar
  12. Allard R.W., Bradshaw A.D. (1964) Implications of genotypeenvironmental interactions in applied plant breeding, Crop Sci. 4, 503–508.CrossRefGoogle Scholar
  13. Almekinders C.J.M., Louwaars N.P., de Bruijn G.H. (1994) Local seed systems and their importance for an improved seed supply in developing countries, Euphytica 78, 207–216.CrossRefGoogle Scholar
  14. Anderson J.B., Torp J. (1986) Quantitative analysis of the early powdery mildew infection stages on resistant barley genotypes, J. Phytopathol. 115, 173–185.CrossRefGoogle Scholar
  15. Andrade V., dos Santos T.M.M., Afonso Morales D., Costa G., Pinheiro de Carvalho M.A.A. (2007) Evaluation of wheat germplasm at the Madeira and Canary Archipelagos, using a single molecular marker. A rapid screening method for durum wheat identification, Cereal Res. Commun. 35, 1397–1404.CrossRefGoogle Scholar
  16. Anikster Y., Noy-Meir I. (1991) The wild-wheat field laboratory at Ammiad, Israel J. Bot. 40, 351–362.Google Scholar
  17. Anikster Y., Wahl I. (1979) Coevolution of rust fungi on Gramineae and Liliaceae and their hosts, Ann. Rev. Phytopathol. 117, 367–430.CrossRefGoogle Scholar
  18. Anikster Y., Manisterski J., Long D.L., Leonard K.J. (2005) Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel, Plant Dis. 89, 55–62.CrossRefGoogle Scholar
  19. Aniol A., Madej L. (1996) Genetic variation for aluminum tolerance in rye, Vortr. Pflanzenz, Chtg. 35, 201–211.Google Scholar
  20. Annichiarico P. (2002) Defining adaptation strategies and yield stability targets in breeding programmes, in: Kang M.S. (Ed.), Quantitative genetics, genomics and plant breeding, CABI, Wallingford, UK, pp. 165–183.Google Scholar
  21. Annicchiarico P., Pecetti L. (1993) Contribution of some agronomic traits to durum wheat performance in a dry Mediterranean region of Northern Syria, Agronomie 13, 25–34.CrossRefGoogle Scholar
  22. Annichiarico P., Pecetti L. (1998) Yield vs. morphophysiological traitbased criteria for selection of durum wheat in a semi-arid Mediterranean region (northern Syria), Field Crop. Res. 59, 163–173.CrossRefGoogle Scholar
  23. Anon. (1943) Annual Report, Wheat Sub-Station, Gurdaspur, India, pp. 1–15.Google Scholar
  24. Arraiano L.S., Brown J.K.M. (2006) Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines, Plant Pathol. 55, 726–738.CrossRefGoogle Scholar
  25. Asher M.J.C., Thomas C.E. (1983) The genetical control of incomplete forms of resistance to Erysiphe graminis in spring barley, Ann. Appl. Biol. 103, 149–156.CrossRefGoogle Scholar
  26. Asher M.J.C., Thomas C.E. (1984) Components of partial resistance to Erysiphe graminis in spring barley, Plant Pathol. 33, 123–130.CrossRefGoogle Scholar
  27. Asher M.J.C., Thomas C.E. (1987) The inheritance ofmechanisms of partial resistance to Erysiphe graminis in spring barley, Plant Pathol. 36, 66–72.CrossRefGoogle Scholar
  28. Assefa A., Labuschagne M.T. (2004) Phenotypic variation in barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia, Biodivers. Conserv. 13, 1441–1451.CrossRefGoogle Scholar
  29. Assefa A., Labuschagne M.T., Viljoen C.D. (2007) AFLP analysis of genetic relationships between barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia, Conserv. Genet. 8, 273–280.CrossRefGoogle Scholar
  30. Attene G., Veronesi F. (1991) Observations on a Sardinian Population of Six Rowed Barley (Hordeum vulgare L.) (Italian), Riv. Agron. 25, 54–56.Google Scholar
  31. Autrique E., Nachit M.M., Monneveux P., Tanksley S.D., Sorrels M.E. (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage, Crop Sci. 36, 735–742.CrossRefGoogle Scholar
  32. Backes G., Hatz B., Jahoor A., Fischbeck G. (2003) RFLP diversity within and between major groups of barley in Europe, Plant Breeding 122, 291–299.CrossRefGoogle Scholar
  33. Baigulova G.K., Pitonya A.A. (1979) Helminthosporium on barley, Uzbekiston Biologija Zurnali 4, 55–57.Google Scholar
  34. Bálint A.F., Kovacs G., Sutka J. (2003) Comparative studies on the seedling copper tolerance of various hexaploid wheat varieties and of spelt in soil with a high copper content and in hydroponic culture, Acta Agr. Hungarica 51, 199–203.Google Scholar
  35. Banttari E.E., Anderson W.H., Rasmusson D.C. (1975) Helminthosporium headblight resistance in six-row spring barleys, Plant Dis. Rep. 59, 274–277.Google Scholar
  36. Baon J.B., Smith S.E., Alston A.M. (1993) Mycorrhizal response of barley cultivars differing in P efficiency, Plant Soil 157, 97–105.Google Scholar
  37. Baresel J.P., Reents H.J., Zimmermann G. (2005) Field evaluation criteria for nitrogen uptake and nitrogen use efficiency, Proceedings of the Workshop on Organic Breeding Strategies and the Use of Molecular Markers Driebergen, The Netherlands, 17–19 January 2005, organised by COST860 SUSVAR Working Group 1 and ECO-PB; in collaboration with COST 851, Working Group 3.Google Scholar
  38. Baresel J.P., Zimmermann G., Reents H.J. (2008) Effects of genotype and environment on N uptake and N partitioning in organically grown winter wheat (Triticum aestivum. L.) in Germany, Euphytica (in press), DOI 10.1007/s10681-008-9718-1.Google Scholar
  39. Ben Amer I.M., Börner A., Röder M.S. (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers, Genet. Resour. Crop Ev. 48, 579–585.CrossRefGoogle Scholar
  40. Bertholdsson N.O., Stoy V. (1995) Yields of Dry Matter and Nitrogen in Highly Diverging Genotypes of Winter Wheat in Relation to Nuptake and N-Utilisation, J. Agron. Crop Sci. 175, 285–295.CrossRefGoogle Scholar
  41. Bingham I.J., Newton A.C., (2009) Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation, in: Walters D. (Ed.), Non-fungicidal approaches to disease control in crops, Blackwell Publishing Oxford, UK, pp. 142–161.Google Scholar
  42. Bisht I.S., Mithal S.K. (1991) Evaluation of barley germplasm for resistance against stripe disease, Indian Phytopathol. 44, 516–517.Google Scholar
  43. Bjørnstad A., Demissie Å., Kilian A., Kleinhofs A. (1997) The distinctness and diversity of Ethiopian barleys, Theor. Appl. Genet. 94, 514–521.CrossRefGoogle Scholar
  44. Bjørnstad Å., Grønnerød S., Mac Key J., Tekauz A., Crossa J., Martens H. (2004) Resistance to barley scald (Rhynchosporium secalis) in the Ethiopian donor lines ‘Steudelli’ and ‘Jet’, analyzed by partial least squares regression and interval mapping, Hereditas 141, 166–179.PubMedCrossRefGoogle Scholar
  45. Blum A. (1988) Plant Breeding for Stress Environments. CRC Press, Boca Raton, Florida.Google Scholar
  46. Bolan N.S. (1991) A critical review on the role of mycorrhizal fungi in uptake of phosphorus by plants, Plant Soil 134, 189–207.CrossRefGoogle Scholar
  47. Bonman J.M., Bockelman H.E., Jin Y., Hijmans R.J., Gironella A. (2007) Geographic distribution of stem rust resistance in wheat landraces, Crop Sci. 47, 1955–1963.CrossRefGoogle Scholar
  48. Bothmer R., Hintum T., Knuepffer H., Sato K. (2003) Diversity in barley (Hordeum vulgare), Developments in Plant Genetics and Breeding, Vol. 7, Elsevier Science B.V.Google Scholar
  49. Brandolini A. (1969) European races of maize, in: Proceedings of the 24th Corn and Sorghum Research Conference, pp. 34–48.Google Scholar
  50. Brandolini A., Brandolini A. (2001) Classification of Italian maize (Zea mays L.) germplasm, Plant Genet. Res. Newsl. 126, 1–11.Google Scholar
  51. Bregitzer P., Mornhinweg D.W., Obert D.E., Windes J. (2008) Registration of ‘RWA 1758’ Russian Wheat Aphid-Resistant Spring Barley, J. Plant Reg. 2, 5–9.CrossRefGoogle Scholar
  52. Brites C., Trigo M.J., Santos C., Collar C., Rosell C.M. (2008) Maizebased gluten-free bread: Influence of processing parameters on sensory and instrumental quality, Food Bioprocess Technol. 226, 1205–1212.Google Scholar
  53. Bryngelsson S., Mannerstedt-Fogelfors B., Kamal-Eldin A., Andersson R., Dimberg L.H. (2002) Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L), J. Sci. Food Agr. 82, 606–614.CrossRefGoogle Scholar
  54. Buchannon K.W., McDonald W.C. (1965) Sources of resistance in barley to Pyrenophora teres, Can. J. Plant Sci. 45, 189–193.CrossRefGoogle Scholar
  55. Buckler IV E.S., Thornsberry J.M. (2002) Plant molecular diversity and applications to genomics, Curr. Opin. Plant Biol. 5, 107–111.PubMedCrossRefGoogle Scholar
  56. Caballero L., Martín L.M., Alvarez J.B. (2001) Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.), Theor. Appl. Genet. 103, 124–128.CrossRefGoogle Scholar
  57. Caldwell K.S., Russell J., Langridge P., Powell W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare, Genetics 172, 557–567.PubMedCrossRefGoogle Scholar
  58. Camacho Villa T.C., Maxted N., Scholten M.A., Ford-Lloyd B.V. (2005) Defining and identifying crop landraces, Plant Genet. Res. 3, 373–384.CrossRefGoogle Scholar
  59. Campos H., Cooper M., Habben J.E., Edmeades G.O., Schusser J.R. (2004) Improving drought tolerance in maize: a view from industry, Field Crop. Res. 90, 19–34.CrossRefGoogle Scholar
  60. Canevara M.G., Romani M., Corbellini M., Perenzin M., Borghi B. (1994) Evolutionary Trends in morphological, physiological, agronomical and qualitative traits of Triticum aestivum L. cultivars bred in Italy since 1900, Eur. J. Agron. 3, 175–185.Google Scholar
  61. Cartwright B., Zarcinas B.A., Mayfield A.H. (1984) Toxic concentrations of boron in a red-brown earth at Gladstone. South Australia, Aust. J. Soil Res. 22, 261–272.CrossRefGoogle Scholar
  62. Carver T.L.W. (1986) Histology of infection by Erysiphe graminis f. sp. hordei in spring barley lines with various levels of partial resistance, Plant Pathol. 35, 232–240.CrossRefGoogle Scholar
  63. Carver B.F., Ownby J.D. (1995) Acid soil tolerance in wheat, Adv. Agron. 54, 117–173.CrossRefGoogle Scholar
  64. CBD (1993) Convention on Biological Diversity, http://www.cbd.int/convention/convention.shtml. Google Scholar
  65. Ceccarelli S. (1987) Yield potential and drought tolerance of segregating populations of barley in contrasting environments, Euphytica 36, 265–273.CrossRefGoogle Scholar
  66. Ceccarelli S. (1994) Specific adaptation and breeding for marginal conditions, Euphytica 77, 205–219.CrossRefGoogle Scholar
  67. Ceccarelli S. (1996) Adaptation to low high-input cultivation, Euphytica 92, 203–214.CrossRefGoogle Scholar
  68. Ceccarelli S., Grando S. (1997) Increasing the efficiency of breeding through farmer participation, in: Ethics and Equity in Conservation and use of Genetics Resources for Sustainable Food Security, Proceeding of a workshop to develop guidelines for the CGIAR, 21–25, April 1997, Foz de Iguacu, Brazil, IPGRI, Rome, pp. 116–121.Google Scholar
  69. Ceccarelli S., Acevedo E., Grando S. (1991) Breeding for yield stability in unpredictable environments: single traits, interaction between traits and architecture of genotypes, Euphytica 56, 169–185.CrossRefGoogle Scholar
  70. Ceccarelli S., Grando S., Van Leur J.A.G. (1987) Genetic diversity in barley landraces from Syria and Jordan, Euphytica 36, 389–405.CrossRefGoogle Scholar
  71. Ceccarelli S., Piano E., Arcioni S. (1976) Evaluation of selected F4 and F5 families in a pedigree programme in barley (Hordeum vulgare L.), Abstracts of papers presented at the XX Annual Meeting, Italian Society for Agricultural Genetics, Papers on miscellaneous crop plants 30, 91.Google Scholar
  72. Chantret N., Salse J., Sabot F., Rahman S., Bellec A., Laubin B., Dubois I., Dossat C., Sourdille P., Joudrier P., Gautier M.-F., Cattolico L., Beckert M., Aubourg S., Weissenbach J., Caboche M., Bernard M., Leroy P., Chalhoub B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell 17, 1033–1045.PubMedCrossRefGoogle Scholar
  73. Chartrain L., Brading P.A., Brown J.K.M. (2005) Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide, Plant Pathol. 54, 134–143.CrossRefGoogle Scholar
  74. Cherdouh A., Khelifi D., Carrillo J.M., Nieto-Taladriz M.T. (2005) The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars, Plant Breeding 124, 338–342.CrossRefGoogle Scholar
  75. Clarke S.M., Hinchsiffe K.E., Haigh Z., Jones H., Pearce B., Wolfe M.S. Thomas J. (2006) A participatory approach to variety trials for organic systems, in: Proceedings of the Joint Organic Congress, Odense, Denmark, May 30–31, 2006.Google Scholar
  76. Cleveland D.A., Soleri D., Smith S.E. (1999) Farmer plant breeding from biological perspective: Implications for collaborative plant breeding, CIMMYT Economics Working Paper 99-10, CIMMYT, Mexico, DF, pp. 1–27.Google Scholar
  77. Clifford B.C. (1985) Barley leaf rust, The cereal rusts. Volume II, Diseases, distribution, epidemiology, and control, in: Roelfs A.P., Bushnell W.R. (Eds.), pp. 173–205.Google Scholar
  78. Coffman F.A. (1977) Oat history, identification and classification, USDAARS, Tech. Bull. 1516, Washington, DC.Google Scholar
  79. Comadran J., Russell J.R., van Eeuwijk F.A., Ceccarelli E.S., Grando S., Baum M., Stanca A.M., Pecchioni N., Mastrangelo A.M., Akar T., Al-Yassin A., Benbelkacem A., Choumane W., Ouabbou H., Dahan R., Bort J., Araus J.-L., Pswarayi A., Romagosa I., Hackett C.A., Thomas W.T.B. (2007) Mapping adaptation of barley to droughted environments, Euphytica 161, 35–45.CrossRefGoogle Scholar
  80. Corazza L., Balmas V., Chilosi G., Nalli R. (1990) Evaluation of resistance of wheat and barley varieties to attack by pathogenic species of Fusarium, Sement Elette 36, 25–28.Google Scholar
  81. Cosic T., Poljak M., Custic M., Rengel Z. (1994) Aluminium tolerance of durum wheat germplasm, Euphytica 78, 239–243.CrossRefGoogle Scholar
  82. Cox M.C., Qualset C.O., Rains D.W. (1985) Genetic variation for nitrogen assimilation and translocation in wheat. I. Dry matter and nitrogen accumulation, Crop Sci. 25, 430–435.CrossRefGoogle Scholar
  83. Czembor J.H. (2002) Resistance to powdery mildew in selections from Moroccan barley landraces, Euphytica 125, 397–409.CrossRefGoogle Scholar
  84. D’Amato F. (1989) The progress of Italian wheat production in the first half of the 20th century: contribution of breeders, Agr. Med. 119, 157–174.Google Scholar
  85. Damania A.B., Porceddu E. (1981) Screening YAR barley for disease resistance, Plant Genet. Res. Newsl. 48, 2–3.Google Scholar
  86. Davies B.E. (1994) Soil chemistry and bioavailability with special reference to trace elements, Plant and chemical elements, in: Farago M.E. (Ed.), VCH, Weinheim, pp. 2–30.Google Scholar
  87. de Freitas L.R.A., Ganança J.F.T., dos santos T.M.M, Pinheiro de Carvalho M.Â.A., Motto M., Clemente Vieira, M.R. (2005) The use of seed proteins, zein, in the evaluation of Madeira maize germplasm, Maydica 50, 105–112.Google Scholar
  88. De Sousa C.N.A. (1998) Classification of Brazilian wheat cultivars for aluminium toxicity in acid soils, Plant Breeding 117, 217–221.CrossRefGoogle Scholar
  89. De Vita P., Nicosia O.L.D., Nigro F., Platani C., Riefolo C., Fonzo N.D., Cattivelli L. (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century, Eur. J. Agron. 26, 39–53.CrossRefGoogle Scholar
  90. Del Pozo-Insfran D., Brenes C.H., Saldivar S.O.S., Talcott S.T. (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products, Food Res. Int. 39, 696–703.CrossRefGoogle Scholar
  91. Demissie A., Bjørnstad Å. (1997) Geographical, altitude and agroecological differentiation of isozyme and hordein genotypes of landrace barleys from Ethiopia: Implications to germplasm conservation, Genet. Resour. Crop Ev. 44, 43–55.CrossRefGoogle Scholar
  92. Demissie A., Bjørnstad Å., Kleinhofs A. (1998) Restriction fragment length polymorphisms in landrace barleys from Ethiopia in relation to geographic, altitude, and agro-ecological factors, Crop Sci. 38, 237–243.CrossRefGoogle Scholar
  93. Dencic S., Kastori R., Kobiljski B., Duggan B. (2000) Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions, Euphytica 113, 43–52.CrossRefGoogle Scholar
  94. Desclaux D. (2005) Participatory plant breeding methods for organic cereals: review and perspectives, in: Proceedings for the Eco-Pb Congress, 17–19 January 2005, Driebergen, The Netherlands, pp. 1–6.Google Scholar
  95. Desclaux D., Chiffoleau Y., Dreyfus F., Mouret J.C. (2002) Cereal cultivars innovations adapted to organic production: a new challenge, 1st International Symposium on organic seed production and plant breeding, Berlin, 21–22 November 2002.Google Scholar
  96. Dhillon B.S., Dua R.P., Brahmi P., Bisht I.S. (2004) On farm conservation of plant genetic resources for food and agriculture, Curr. Sci. 87, 557–559.Google Scholar
  97. Diederichsen A. (2008) Assessments of genetic diversity within a world collection of cultivated hexaploid oat (Avena sativa L.) based on qualitative morphological characters, Genet. Resour. Crop Ev. 55, 419–440.CrossRefGoogle Scholar
  98. Dobrovolskaya O., Saleh U., Malysheva-Otto L. (2005) Rationalising germplasm collections: a case study for wheat, Theor. Appl. Genet. 111, 1322–1329.PubMedCrossRefGoogle Scholar
  99. dos Santos T.M.M., Ganança F., Slaski J., Pinheiro de Carvalho M.Â.A. (2009) Characterization of wheat genetic resources from the Madeira archipelago, Genet. Resour. Crop Ev. 56, 363–370.CrossRefGoogle Scholar
  100. dos Santos T.M.M., Pinheiro de Carvalho M.ÂA., Taylor G.J., Clemente Vieira M.R. (2005) Evaluation of the Madeiran wheat germplasm for aluminium resistance using aluminium-induced callose formation in root apices as a marker, Acta Physiol. Plant. 27, 297–302.CrossRefGoogle Scholar
  101. Dreisigacker S., Zhang P., Warburton M.L., Skovmand B., Hoisington D., Melchinger A.E. (2005) Genetic Diversity among and within CIMMYT Wheat Landrace Accessions Investigated with SSRs and Implications for Plant Genetic Resources Management, Crop Sci. 45, 653–661.CrossRefGoogle Scholar
  102. Du Toit F. (1987) Resistance in wheat (Triticum aestivum) to Diuraphis noxia (Hemiptera: Aphididae), Cereal Res. Commun. 15, 175–179.Google Scholar
  103. Dubey P., Mishra B. (1992) Evaluation of barley varieties against covered smut, J. Res., Birsa Agric. Univ. 4, 179–180.Google Scholar
  104. Dunaevskij A.G., Sotnikov V.V., Bibik E.V. (1989) Research for sources of resistance to the main diseases in spring barley, Selektsiya i Semenovodstvo, Kiev 67, 14–19.Google Scholar
  105. Duvick D.N. (1992) Genetic contributions to advances in yield of US maize, Maydica 37, 69–79.Google Scholar
  106. Edwards J.H., Pedersen J.F., Kingery R.C. (1990) Heritability of root characteristics affecting mineral uptake in tall fescue, in: El Bassam N., Dambroth M., Loughmann B.C. (Eds.), Genetic aspects of plant mineral nutrition, Kluwer Academic Publishers.Google Scholar
  107. Engel J.M.M., Visser L. (2003) A Guide to Effective Management of Germplasm Collections, IPGRI Handbooks for Genebanks No. 6, IPGRI, Rome, Italy.Google Scholar
  108. Evans L.T. (1980) The natural history of crop yield, Am. Sci. 68, 388–397.Google Scholar
  109. Faiad M.G.R., Wetzel M.M.V.S., Salomao A.N., Cunha R. (1996) Evaluation of fungi in seed germplasm before long term storage, Seed Sci. Technol. 24, 505–511.Google Scholar
  110. FAO (1998) The State of the World’s Plant Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, 510 p.Google Scholar
  111. Fasoula D.A. (1990) Correlations between auto-, allo-, and nilcompetition and their implications in plant breeding, Euphytica 50, 57–62.CrossRefGoogle Scholar
  112. Fasoula D.A. (2004) Accurate whole-plant phenotyping: An important component for successful marker assisted selection (MAS), Genetic variation for Plant Breeding (17th EUCARPIA General Congress), in: Vollmann J., Grausgruber H., Ruckenbauer P. (Eds.), pp. 203–206.Google Scholar
  113. Fasoula V.A. (2008) Two novel whole-plant field phenotyping equations maximize selection efficlency, Modern Variety Breeding for Present and Future Needs, in: Prohens J., Badenes M.L. (Eds.), Proceedings 18th EUCARPIA General Congress, pp. 361–365.Google Scholar
  114. Fasoula V.A., Boerma H.R. (2007) Intra-cultivar variation for seed weight and other agronomic traits within three elite soybean cultivars, Crop Sci. 47, 367–373.CrossRefGoogle Scholar
  115. Fasoulas A.C., Fasoula V.A. (1995). The honeycomb selection designs, Plant Breeding Rev. 13, 87–139.Google Scholar
  116. Fasoula D.A., Fasoula V.A. (1997) Competitive ability and plant breeding, Plant Breeding Rev. 14, 89–138.Google Scholar
  117. Fasoula V.A., Fasoula D.A. (2000) Honeycomb Breeding: Principles and Applications, Plant Breeding Rev. 18, 177–250.Google Scholar
  118. Fasoula V.A., Fasoula D.A. (2002) Principles underlying genetic improvement for high and stable crop yield potential, Field Crop. Res. 75, 191–209.CrossRefGoogle Scholar
  119. Fasoula V.A., Fasoula D.A. (2003) Partitioning Crop Yield into Genetic Components, in: Kang M.S. (Ed.), Handbook of Formulas and Software for Plant Geneticists and Breeders, Food Products Press, pp. 321–327.Google Scholar
  120. Feil B., Thiraporn R., Geisler G., Stamp P. (1990) Root traits of maize seedlings- indicators of nitrogen efficiency? Plant Soil 123, 155–159.CrossRefGoogle Scholar
  121. Fekadu A., Parlevliet J.E. (1997) Variation between and within Ethiopian barley landraces, Euphytica 94, 183–189.CrossRefGoogle Scholar
  122. Feldman M. (2001) Origin of cultivated wheat, in: Bonjean A.P., Angus W.J. (Eds.), The world wheat book, A history of wheat Breeding, Lavoisier Publishing, Paris, pp. 3–57.Google Scholar
  123. Feng Z.-Y., Zhang L.-L., Zhang Y.-Z., Ling H.-Q. (2006) Genetic diversity and geographical differentiation of cultivated six-rowed naked barley landraces from the Qinghai-Tibet plateau of China detected by SSR analysis, Genet. Mol. Biol. 29, 330–338.CrossRefGoogle Scholar
  124. Ferrio J.P., Alonso N., Voltas J., Araus J.L. (2007) Grain weight changes over time in ancient cereal crops: Potential roles of climate and genetic improvement, J. Cereal Sci. 44, 323–332.CrossRefGoogle Scholar
  125. Feuillet C., Langridge P., Waugh R. (2007) Cereal breeding takes a walk on the wild side, Trends Genet. 24, 24–32.PubMedCrossRefGoogle Scholar
  126. Filippova G.G., Kashemirova L.A., Chiburova I.V. (1993) On seed testing in spring barley, Zashchita Rastenii Moskva 11, 29–30.Google Scholar
  127. Fischer R.A. (1981) Optimizing the use of water and nirogen through breeding of crops, Plant Soil 58, 249–278.CrossRefGoogle Scholar
  128. Flint-Garcia S.A., Jampatong C., Darrah L.L., McMullen M.D. (2003) Quantitative trait locus analysis of stalk strength in four maize populations, Crop Sci. 43, 13–22.CrossRefGoogle Scholar
  129. Foy C.D., Armiger W.H., Briggle L.W., Reid D.A. (1965) Differential aluminum tolerance of wheat and barley varieties in acid soils, Agron. J. 57, 413–417.CrossRefGoogle Scholar
  130. Frankel O.H., Brown A. (1984) Plant genetic resources today: A critical appraisal, in: Genetics: New Frontiers: Proceedings of the 15th International Congress of Genetics, 1984, New Delhi.Google Scholar
  131. Frankel O.H., Brown A.H.D., Burdon J.J. (1995) The conservation of plant diversity, Cambridge: Cambridge University Press.Google Scholar
  132. Freisleben R. (1940) Die phylogenetische Bedeutung asiatischer Gersten, Züchter 12, 257–272.Google Scholar
  133. Fu Y.B., Peterson G.W., Williams D., Richards K.W., Fetch J.M. (2005) Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm, Theor. Appl. Genet. 111, 530–539.PubMedCrossRefGoogle Scholar
  134. Fukuyama T., Yamaji S., Nakamura H. (1998) Differentiation of virulence in Rhynchosporium secalis in the Hokuriku district and sources of resistance to the pathogen, Breeding Sci. 48, 23–28.Google Scholar
  135. Gahoonia T.S., Nielsen N.E. (2004a) Barley genotypes with long root hairs sustain high grain yields in low-P field, Plant Soil 262, 55–62.CrossRefGoogle Scholar
  136. Gahoonia T.S., Nielsen N.E. (2004b) Root traits as tools for creating phosphorus efficient crop varieties, Plant Soil 260, 47–57.CrossRefGoogle Scholar
  137. Gaike M.V. (1970) Resistance of barley cultivars to net blotch, in: Genetic basis of disease resistance of field crops, Riga, pp. 70–74.Google Scholar
  138. Galili G., Galili S., Lewinsohn E., Tadmore Y. (2002) Genetic, molecular and genomic approaches to improve value of plant foods and feeds, Crit. Rev. Plant Sci. 21, 167–204.CrossRefGoogle Scholar
  139. Gaut B.S., Long A.D. (2003) The lowdown on linkage disequilibrium, Plant Cell 15, 1502–1506.PubMedCrossRefGoogle Scholar
  140. Gauthier P., Gouesnard B., Dallard J., Redaelli R., Rebourg C., Charcosset A., Boyat A. (2002) RFLP diversity and relationships among traditional European maize populations, Theor. Appl. Genet. 105, 91–99.PubMedCrossRefGoogle Scholar
  141. Gauthier P., Gouesnard B., Dallard J., Redaelli R., Rebourg C., Charcosset A., Hamza S., Hamida W.B., Rebaï A., Harrabi M. (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits, Euphytica 135, 107–118.CrossRefGoogle Scholar
  142. Geiger H.H., Heun M. (1989) Genetics of quantitative resistance to fungal diseases, Annu. Rev. Phytopathol. 27, 317–341.CrossRefGoogle Scholar
  143. Gélinas P., McKinnon C.M. (2006) Effect of wheat variety, farming site and breadbaking on total phenolics, Int. J. Food Sci. Tech. 41, 329–332.CrossRefGoogle Scholar
  144. Gilchrist S.L., Vivar F.H., Gonzalez C.F., Velazquez C. (1995) Selecting sources of resistance to Cochliobolus sativus under subtropical conditions and preliminary loss assessment, Rachis 14, 35–39.Google Scholar
  145. Goates B.J. (1986) Common bunt and dwarf bunt. Chapter 2, in: Wilcoxson R.D., Saaru E.E. (Eds.), Bunt and Smut Diseases of Wheat: Concepts and Methods of Disease Management, Mexico, D.F.: CIMMYT.Google Scholar
  146. Goldberg A.D., Allis C.D., Bernstein E. (2007) Epigenetics: A Landscape takes shape, Cell 128, 635–638.PubMedCrossRefGoogle Scholar
  147. Goodman M.M., Paterniani E. (1969) The races of maize: III. Choices of appropriate characters for racial classification, Econ. Bot. 23, 265–273.CrossRefGoogle Scholar
  148. Gregová E., Hermuth J., Kraic J., Dotlacil L. (1999) Protein heterogeneity in European wheat landraces and obselete cultivars, Genet. Resour. Crop Ev. 46, 521–528.CrossRefGoogle Scholar
  149. Gregová E., Hermuth J., Kraic J., Dotlacil L. (2004) Protein heterogeneity in European wheat landraces and obsolete cultivars: Additional information, Genet. Resour. Crop Ev. 51, 569–575.CrossRefGoogle Scholar
  150. Gregová E., Hermuth J., Kraic J., Dotlacil L. (2006) Protein heterogeneity in European wheat landraces and obsolete cultivars: Additional information II, Genet. Resour. Crop Ev. 53, 867–871.CrossRefGoogle Scholar
  151. Grigor’ev M.F., Lukyanova M.V., Kabalkina N.A., Sidorov A.A. (1988) Sources of resistance in barley to Fusarium and Helminthosporium root rots, Sb. Nauchn. Trud. Prikl. Bot. Gen. Selektsii 122, 87–91.Google Scholar
  152. Grønnerød S., Marøy A.G., MacKey J., Tekauz A., Penner G.A., Bjørnstad A. (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668), Euphytica 126, 235–250.CrossRefGoogle Scholar
  153. Gu X. (1989) Trials of several malting barley cultivars from German Federal Republic, Zuowu Pinzhong Ziyuan 1, 34–35.Google Scholar
  154. Gudu S., Maina S.M., Onkware A.O., Ombakho G., Ligeyo D.O. (2001) Screening of Kenyan maize germplasm tolerance for tolerance to low pH and aluminium for use in acid soils of Kenya, Seventh Eastern and Southern Africa Regional Maize Conference, pp. 216–221.Google Scholar
  155. Gupta P.K., Rustgi S., Kulwal P.L. (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects, Plant Mol. Biol. 57, 461–485.PubMedCrossRefGoogle Scholar
  156. Hammer K., Gladis T.H. (1996) Funktionen der Genbank des IPK Gatersleben bei der in situ — Erhaltung on farm, Schriften zu Genetischen Ressourcen 2, 83–89.Google Scholar
  157. Hammer K., Spahillar M. (1998) Burimet gjenetike te bimeve dhe agrobiodiversiteti, Buletini i Shkencave Bujqesore 3, 29–36.Google Scholar
  158. Hammer K., Diederichsen A., Spahillar M. (1999) Basic studies toward strategies for conservation of plant genetic resources, in: Serwinski J., Faberova I. (Eds.), World Information and Early Warning System on Plant Genetic Resources, pp. 29–33, FAO, Rome, http://apps3.fao.org/wiews/Prague/Paper1.htm.Google Scholar
  159. Hamza S., Hamida W.B., Rebai A., Harrabi M. (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits, Euphytica 135, 107–118.CrossRefGoogle Scholar
  160. Hao C.Y., Zhang X.Y., Wang L.F., Dong Y.S., Shang X.W., Jia J.Z. (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China, Mol. Breeding 17, 69–77.CrossRefGoogle Scholar
  161. Hare R.A. (1997) Characterisation and inheritance of adult plant stem rust resistance in durum wheat, Crop Sci. 37, 1094–1098.CrossRefGoogle Scholar
  162. Harlan J.R. (1975) Our vanishing genetic resources, Science 188, 618–621.CrossRefGoogle Scholar
  163. Harlan J.R. (1977) The origins of cereal agriculture in the Old World, in: Reed C.A. (Ed.), Origins of agriculture, Moulton Publ. The Hague, Netherlands, pp. 357–383.CrossRefGoogle Scholar
  164. Hawkes J.G., Maxted N., Floyd-Lloyd B.V. (2002) The ex situ conservation of plant genetic resources, Kluwer, The Netherlands, pp. 1–16.Google Scholar
  165. Hede A.R., Skovmand B., López-Cesati J. (2001) Acid Soils and Aluminum Toxicity, Application of Physiology in Wheat Breeding, in: Reynolds M.P., Ortiz-Monasterio J.I., McNab A. (Eds.),Mexico, D.F.: CIMMYT, pp. 172–182.Google Scholar
  166. Hetrick B.A.D., Wilson G.W.T., Cox T.S. (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors — a synthesis, Can. J. Bot. 71, 512–518.CrossRefGoogle Scholar
  167. Heuberger J.G.K., Horst W.J. (1995) Effect of root growth characteristics on nitrogen use efficiency of tropical maize (Zea mays) varieties, in: Jewell D.C., Waddington S.R., Ransom J.K., Pixley K.V. (Eds.), Maize research for stress environments, CIMMYT, Mexico D.F. (Mexico), pp. 44–48.Google Scholar
  168. Heun M. (1986) Quantitative differences in powdery mildew resistance among spring barley cultivars, J. Phytopathol. 115, 222–228.CrossRefGoogle Scholar
  169. Heun M., Schäfer-Pregl R., Klawan D., Castagna R., Accerbi M., Borghi B., Salamini F. (1997) Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting, Science 278, 1312–1314.CrossRefGoogle Scholar
  170. Hidalgo A., Brandolini A., Pompei C., Piscozzi R. (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.), J. Cereal Sci. 44, 182–193.CrossRefGoogle Scholar
  171. Hill J.P., Johnston M.R., Velasco V.R, Brown W.M. (1995) Responses of selected barley lines to barley stripe rust in Bolivia, Ecuador and Germany, Phytopathology 85, 1040.Google Scholar
  172. Hintum T.J.L., Knüpffer H. (1995) Duplication within and between germplasm collections. I. Identification duplication on the basis of passport data, Genet. Resour. Crop Ev. 42, 1127–1133.Google Scholar
  173. Hiura U. (1960) Studies on the disease-resistance in barley. IV. Genetics of resistance to powdery mildew, Ber. Ohara Inst. Landwirtsch. Biol. Okayama Univ. 11, 235–300.Google Scholar
  174. Hoffmann W., Nover I. (1959) Ausgangsmaterial für die Züchtung mehltauresistenter Gersten, Z. Pflanzenzücht. 42, 68–78.Google Scholar
  175. Holly L. (2000) Strategic questions of conserving agro-biodiversity in Hungary, Proceedings of the Hungarian Plant Breeding Conference, Hungarian Academy of Sciences, Budapest, p. 18.Google Scholar
  176. Honecker L. (1938) Über die physiologische Spezialisierung des Gerstenmehltaus als Grundlage für die Immunitätszüchtung, Züchter 10, 169–181.Google Scholar
  177. Horst W.J., Puschel A.K., Schmohl N. (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensivity in maize, Plant Soil 192, 23–30.CrossRefGoogle Scholar
  178. Hsam S.L.K., Zeller F.J. (2002) Breeding for Powdery Mildew Resistance in common wheat (Triticum aestivum L.), in: Bélanger R.R., Bushnell W.R., Dik A.J., Carver T.L.W. (Eds.), The powdery mildews: A comprehensive treatise, The American Phytopathological Society, St. Paul, MN, USA, pp. 219–238.Google Scholar
  179. Hubert K.H., Buertsmayr H.B. (2006) Development of Methods for Bunt Resistance Breeding for Organic Farming, Czech J. Genet. Plant Breeding 42, 66–71.Google Scholar
  180. Igrejas G., Guedes-Pinto H., Carnide V., Clement J., Branlard G. (2002) Genetical, biochemical and technological parameters associated with biscuit quality. II. Prediction using storage proteins and quality characteristics in a soft wheat population, J. Cereal Sci. 36, 187–197.CrossRefGoogle Scholar
  181. IPGRI (1985) Descriptors for Wheat (Revised), IPGRI, Rome, Italy.Google Scholar
  182. IPGRI (2003) A Guide to Effective Management of Germplasm Collections, in: Engels J.M.M., Visser L. (Eds.), IPGRI Handbooks for Genebanks 6, IPGRI, Rome, Italy.Google Scholar
  183. Jackson P., Robertson M., Cooper M., Hammer G. (1996) The role of physiological understanding in plant breeding; from a breeding perspective, Field Crop. Res. 49, 11–37.CrossRefGoogle Scholar
  184. Jaradat A.A., Shahid M. (2006) Population and multilocus isozyme structures in a barley landrace, Plant Genet. Res. Charact. Util. 4, 108–116.CrossRefGoogle Scholar
  185. Jaradat A.A., Ajlouni M.M., Duwayri M.A. (1996) Genetic resources of cereals and their wild relatives in Jordan: revisited, in: Jaradat A.A. (Ed.), Plant Genetic Resources of Jordan, IPGR, Regional Office for West Asia and North Africa, Aleppo, Syria, pp. 55–75.Google Scholar
  186. Jaradat A.A., Shahid M., Al Maskri A.Y. (2004) Genetic Diversity in the Batini Barley Landrace from Oman: I. Spike and Seed Quantitative and Qualitative Traits, Crop Sci. 44, 304–315.CrossRefGoogle Scholar
  187. Jilal A., Grando S., Henry R.J., Lee L.S., Rice N., Hill H., Baum M., Ceccarelli S. (2008) Genetic diversity of ICARDA’s worldwide barley landrace collection, Genet. Resour. Crop Ev. 2008, 1–10.Google Scholar
  188. Jin Y., Steffenson B.J., Bockelman H.E. (1995) Evaluation of cultivated and wild barley for resistance to pathotypes of Puccinia hordei with wide virulence, Genet. Resour. Crop Ev. 42, 1–6.CrossRefGoogle Scholar
  189. Johnson V.A., Mattern P.J., Schmidt J.W. (1967) Nitrogen relations during spring growth in varieties of Triticum aestivum L. differing in grain protein content, Crop Sci. 7, 664–667.CrossRefGoogle Scholar
  190. Jones H., Hinchsliffe K., Clarke S.M., Pearce B., Gibbon D., Lyon F., Harris F., Thomas J., Wolfe M.S. (2006) A participatory methodology for large scale field trials in the UK, in: Proceedings of the Joint Organic Congress, Odense, Denmark, May 30–31, 2006.Google Scholar
  191. Kandawa-Schulz M.A. (1996) Untersuchungen an Artbastarden von Wild- und Kulturgersten (Hordeum bulbosum x H. vulgare) zur Introgression züchterisch wichtiger Resistenzeigenschaften, Diss. Uni Rostock, Mathem.-Naturwiss. Fak.Google Scholar
  192. Kapulnik Y., Kushnir U. (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscolar mycorrhizal fungi, Euphytica 56, 27–36.Google Scholar
  193. Kapulnik Y., Feldmann M., Okon Y., Henis Y. (1985) Contribution of nitrogen fixed Azospirillum to the nutrition of spring wheat in Israel, Soil Biol. Biochem. 17, 509–515.CrossRefGoogle Scholar
  194. Kapulnik Y., Okon Y., Henis Y. (1987) Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasiliense under field conditions, Biol. Fert. Soils 4, 27–35.Google Scholar
  195. Kapulnik Y., Sarig S., Nur I., Okon Y. (1983) Effect of Azospirillum inoculation on yield of field-grown wheat, Can. J. Microbiol. 29, 895-899. Kashiwazaki S., Ogawa K., Usugi T., Tsuchizaki T. (1989) Characterization of several strains of barley yellow mosaic virus, Ann. Phytopathol. Soc. Japan 55, 16–25.Google Scholar
  196. Katsiotis A., Germeier C.U., Koenig J., Legget M., Bondo L., Frese L., Bladenopoulos K., Ottoson F., Mavromatis A., Veteläinen M., Menexes G., Drossou A. (2009) Screening a European Avena landrace collection using morphological and molecular markers for quality and resistance breeding, in: Proceeding of the EUCARPIA Cereals Section, Lleida, Spain, November 13–17, 2006.Google Scholar
  197. Kebebew F., Tsehaye Y., McNeilly T. (2001) Diversity of durum wheat (Triticum durum Desf.) at in situ conservation sites in North Shewa and Bale, Ethiopia, J. Agric. Sci. Camb. 136, 383–392.Google Scholar
  198. Khatskevitch L.K., Benken A.A. (1990) Root and stem rots of cereals, Zashchita rastenii, Moskva 9, 14–15.Google Scholar
  199. Khokhlova A.P., Vershinina V.A., Lukyanova M.V., Terentyeva I.A. (1989) VIR Catalogue: Characteristics of susceptibility to loose smut, leaf rust and powdery mildew, VIR, St. Petersburg, 30 p.Google Scholar
  200. Kirdoglo E.K. (1990) Breeding barley for resistance to smut and leaf/stem diseases, Vestnik Selskokhozyaistvennoi Nauki Moskva 10, 98–104.Google Scholar
  201. Kmecl A., Mauch F., Winzeler H., Dudler R. (1995) Quantitative field resistance of wheat to powdery mildew and defence reactions at the seedling stage-identification of a potential marker, Physiol. Mol. Plant P. 47, 185–199.CrossRefGoogle Scholar
  202. Kochian L.V., Pineros M.A., Hoekenga O.A. (2005) The physiology, genetics and molecular biology of plant aluminium resistance and toxicity, Plant Soil 274, 175–195.CrossRefGoogle Scholar
  203. Kolodinska Brantestam A.K., Von Bothmer R., Dayteg C., Rashal I., Tuvesson S. Weibull J. (2004) Inter simple sequence repeat analysis of genetic diversity and relationships in cultivated barley of Nordic and Baltic origin, Hereditas 141, 186–192.PubMedCrossRefGoogle Scholar
  204. Kolodinska Brantestam A.K., Von Bothmer R., Rashal I., Weibull J. (2003) Changes in the genetic diversity of barley of Nordic and Baltic origin, studied by isozyme electrophoresis, Plant Genet. Res. Charact. Util. 1, 143–149.CrossRefGoogle Scholar
  205. Kotali E. et al. (2008) 12th meeting of the Hellenic Scientific Society for Plant Breeding and Genetics, Naoussa 8–10 October 2008, p. 121.Google Scholar
  206. Kovács G. (2006a) Selection of field crop varieties suitable for organic farming, Biokontroll Hungária Kht. Budapest, p. 88.Google Scholar
  207. Kovács G. (2006b) The possible use of founder effect to produce locally adapted cereal varieties, in: Oestergard H., Fontaine L. (Eds.), Cereal Crop Diversity: Implications for production and products ITAB, Paris, France, pp. 68–70.Google Scholar
  208. Kovács G. (2008) Bread wheat composite crosses as a source modern landraces, NKTH, Budapest, Research Report, p. 95.Google Scholar
  209. Kovács G., Kótai C., Kanyó Z., Láng L., Nagyne K.R., Polgáár Z., Roszík P., Zsigrai G. (2006) Variety recommendation list for organic farmers, in: Kovács G. (Ed.), Selection of field crop varieties suitable for organic farming, Biokontroll Hungária Kht. Budapest, pp. 39–82 (in Hungarian).Google Scholar
  210. Kuhlmann H., Barraclough P.B., Weir A.H. (1989) Utilization of mineral nitrogen in the subsoil by winter wheat, Z. Pflanzenernähr. Bodenk. 152, 291–295.CrossRefGoogle Scholar
  211. Kurilich A.C., Juvik J.A. (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays, J. Agr. Food Chem. 47, 1948–1955.CrossRefGoogle Scholar
  212. Láng L. (2006) Improving the yield, adaptability and protein content of barley, wheat and spelt, in: Bedõ Z., Kovács G. (Eds.), Organic breeding and cultivation of cereals, Agroinform Publishing Ltd. Budapest, pp. 88–93.Google Scholar
  213. Laperche A., Devienne-Barret F., Maury O., Legouis J., Ney B. (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency, Theor. Appl. Genet. 113, 1131–1146.PubMedCrossRefGoogle Scholar
  214. Larsson H. (2006) Old cultural cereal varieties are broadening the genetic base for organic farming and will increase the quality for consumers, Proceedings of the ECO-PB Workshop: “Participatory Plant Breeding: Relevance for Organic Agriculture?”, La Besse, France 11–13 June 2006.Google Scholar
  215. Lehmann L., Bothmer R. von, Jorna M.L., Slootmaker L.A.J. (1988) Hordeum spontaneum and landraces as a gene resource for barley breeding. Cereal breeding related to integrated cereal production, Proceedings of the conference of the Cereal Section of EUCARPIA, Wageningen, Netherlands, 24–26 February 1988, pp. 190–194.Google Scholar
  216. Leur Van J.A.G. Pathology, Cereal Improvement Program Ann. Rep., 1988, pp. 122–130.Google Scholar
  217. Little R. (1988) Plant soil interactions at low pH, in: Problem Solving — The Genetic Approach, Commun. Soil Sci. Plan. Anal. 19, 1239–1257.CrossRefGoogle Scholar
  218. Lukyanova M.V. (1990) New sources and donors for barley breeding, Byulleten Vsesoyuznogo Nauchno Issledovatel’skogo Instituta Rastenievodstva imeni N.I. Vavilova 201, 26–30.Google Scholar
  219. Lukyanova M.V., Terentyeva I.A. (1997) Catalogue of genetic collection of barley with identified genes of resistance to powdery mildew, 48 VIR, St. Petersburg, Russia.Google Scholar
  220. Luthra J.K., Verma R.S., Prabhu K.V. (1992) Development of isogenic lines in barley with reference to Puccinia striiformis West, in: Munck L. (Ed.), Barley Genet. VI, 622–625, Munksgaard Int. Publ. Ltd., Copenhagen, Denmark.Google Scholar
  221. Mamluk O.F., Nachit M.M. (1994) Sources of Resistance to Common Bunt (Tilletia foetida and T. caries) in Durum Wheat, J. Phytopathol. 142, 122–130.CrossRefGoogle Scholar
  222. Manjunatha T., Bisht I.S., Bhat K.V., Singh B.P. (2007) Genetic diversity in barley (Hordeum vulgare L. ssp. vulgare) landraces from Uttaranchal Himalaya of India, Genet. Resour. Crop Ev. 54, 55–65.CrossRefGoogle Scholar
  223. Mannerstedt-Fogelfors B. (2001) Antioxidants and lipids in oat cultivars as affected by environmental factors, Doctoral Thesis, Acta Universitatis Agriculturae Sueciae, Agraria 271, ISSN 1401-6249, Uppsala.Google Scholar
  224. Mano Y., Takeda K. (1995) Varietal variation and effects of some major genes on salt tolerance in barley seedlings, Okayama University, Bull. Res. Inst. Biores. 3, 71–81.Google Scholar
  225. Mano Y., Nakazumi H., Takeda K. (1996) Varietal variation in and effect of some major genes on salt tolerance at the germination stage in barley, Breeding Sci. 46, 227–233.Google Scholar
  226. Manske G.G.B. (1989) Genetical Analysis of VA mycorrhiza with spring wheat, Agr. Ecosyst. Environ. 29, 273–280.CrossRefGoogle Scholar
  227. Manske G.G.B. (1990) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat, in: El Bassam et al. (Eds.), Genetic aspects of plant mineral nutrition, 397–405, Kluwer Academic Publishers.CrossRefGoogle Scholar
  228. Manske G.G.B., Lüttger A.B., Behl R.K., Vlek P.L.G. (1995) Nutrient Efficienca Based on VA Mycorrhizae (VAM) and total root length of Wheat Cultivars Grown in India, Angew. Bot. 69, 108–110.Google Scholar
  229. Mantzavinou A., Bebeli P.J., Kaltsikes P.J. (2005) Estimating genetic diversity in Greek durum wheat landraces with RAPD markers, Aust. J. Agr. Res. 56, 1355–1364.CrossRefGoogle Scholar
  230. Martínez F., Rubiales D. (2002) Resistance to leaf rust in durum wheat cultivar Creso, Cereal Rusts and Powdery Mildews Bull. 30, 2002, http://www.crpmb.org/2002/1130martinez.
  231. Martínez F.B., Niks R.E., Rubiales D. (2001a) Partial resistance to leaf rust in a collection of ancient Spanish barleys, Hereditas 135, 199–203.PubMedCrossRefGoogle Scholar
  232. Martínez F., Niks R.E., Moral A., Urbano J.M., Rubiales D. (2001b) Search for partial resistance to leaf rust in a collection of ancient Spanish wheats, Hereditas 135, 193–197.PubMedCrossRefGoogle Scholar
  233. Martínez F., Niks R.E., Singh R.P., Rubiales D. (2001c) Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust, Hereditas 135, 111–114.PubMedCrossRefGoogle Scholar
  234. Martos V., Royo C., Rharrabti Y., Garcia del Moral L.F. (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century, Field Crop. Res. 91, 107–116.CrossRefGoogle Scholar
  235. Masum Akond A.S.M.G., Watanabe N. (2005) Genetic variation among Portuguese landraces of “Arrancada” wheat and Triticum petropavlovskyi by AFLP-based assessment, Genet. Resour. Crop Ev. 52, 619–628.CrossRefGoogle Scholar
  236. Matsuoka Y., Vigouroux Y., Goodman M.M., Sanchez G.J., Buckler E., Doebley J. (2002) A single domestication for maize shown by multilocus microsatellite genotyping, Proc. Natl Acad. Sci. (USA) 99, 6080–6084.CrossRefGoogle Scholar
  237. Maxted N. (2003) Conserving the genetic resources of crop wild relatives in European Protected Areas, Biol. Conserv. 113, 411–417.CrossRefGoogle Scholar
  238. McClintock B. (1984) The significance of the responses of the genome to challenge, Science 226, 792–801.PubMedCrossRefGoogle Scholar
  239. McIntosh R.A., Hart G.E., Devos K.M., Gale M.D., Rogers W.J. (1998) Catalogue of gene symbols for wheat, Vol. 5, in: Proc. 9th Int. Wheat Genet. Symp., Saskatchewan, Canada, pp. 134–138.Google Scholar
  240. Medini M., Hamza S., Rebai A., Baum M. (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers, Genet. Resour. Crop Ev. 52, 21–31.CrossRefGoogle Scholar
  241. Miflin B. (2000) Crop Improvement in the 21st century, J. Exp. Bot. 51, 1–8.PubMedCrossRefGoogle Scholar
  242. Monasterio J.I., Graham R.D. (2000) Breeding for trace minerals in wheat, Food Nutr. Bull. 21, 393–396.Google Scholar
  243. Moore-Colyer R.J. (1995) Oats and oat production in history and prehistory, in: Welch R.W. (Ed.), The oat crop, Chapman & Hall, pp. 1–33.CrossRefGoogle Scholar
  244. Moragues M., Garcia del Moral L.F., Moralejo M., Royo C. (2006a) Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mfeiterranean basin. I. Yield components, Field Crop. Res. 95, 194–205.CrossRefGoogle Scholar
  245. Moragues M., Garcia del Moral L.F., Moralejo M., Royo C. (2006b) Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin. II. Biomass production and allocation, Field Crop. Res. 95, 182–193.CrossRefGoogle Scholar
  246. Moreira P.M. (2006) Participatory maize breeding in Portugal. A case study, Acta Agron. Hungarica 54, 431–439.CrossRefGoogle Scholar
  247. Morrell P.L., Toleno D.M., Lundy K.E., Clegg M.T. (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization, Proc. Natl Acad. Sci. (USA) 102, 2442–2447.CrossRefGoogle Scholar
  248. Morris M.L., Bellon M.R. (2004) Participatory plant breeding research: Opportunities and challenges for the international crop improvement system, Euphytica 136, 21–35.CrossRefGoogle Scholar
  249. Moseman J.G. (1955) Sources of resistance to powdery mildew of barley, Plant Dis. Rep. 39, 967–972.Google Scholar
  250. Moseman J.G., Craddock J.C. (1976) Genetic basis for barley germplasm conservation, in: Gaul (Ed.), Barley Genetics III, Proc. Third Int. Barley Genet. Sympos., Verlag Karl Thieming, Munich, pp. 51–57.Google Scholar
  251. Moseman J.G., Smith R.T. (1976) Breeding for multiple pest resistance, Barley Genet. III, Proc. 3rd Int. Barley Gen. Sympos., Garching, in: Gaul H. (Ed.), Verlag Karl Thieming, Munich, pp. 421–425.Google Scholar
  252. Motzo R., Giunta F. (2007) The effect of breeding on the phenology of Italian durum wheats: From landraces to modern cultivars, Eur. J. Agron. 26, 462–470.CrossRefGoogle Scholar
  253. Munns R. (2005) Response of crops to salinity, in: International salinity forum — managing saline soils and water: science, technology and social issues, Riverside Convention Center, Riverside, California, USA, 25–28 April 2005, pp., USDA-ARS Salinity Laboratory, Riverside, USA.Google Scholar
  254. Murphy K., Jones S. (2006) Breeding wheat for organic conditions, Nutritional value, http://www.organic-center.org/reportfiles/Jones%20Tilth%2006.pdf.Google Scholar
  255. Murphy K.M., Reeves P.G., Jones S.S. (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars, Euphytica 163, 381–390.CrossRefGoogle Scholar
  256. Nachit M.M., Ketata H., Yau S.K. (1988) Breeding durum wheat for stress environments of the Mediterranean region, in: Wittner. G. (Ed.), The future of cereals for human feeding and development of biotechnological research, Proc. Third Int. Symp. on durum wheat, Foggia, Italy, 5–7 May 1988.Google Scholar
  257. Nawrot M., Szarejko I., Maluszynski M. (2001) Barley mutants with increased tolerance to aluminium toxicity, Euphytica 120, 345–356.CrossRefGoogle Scholar
  258. Negassa M. (1985a) Geographic distribution and genotypic diversity of resistance to powdery mildew of barley in Ethiopia, Hereditas 102, 113–121.CrossRefGoogle Scholar
  259. Negassa M. (1985b) Genetics of resistance to powdery mildew in some Ethiopian barleys, Hereditas 102, 123–138.CrossRefGoogle Scholar
  260. Nelson K.E., Burgess L.W. (1994) Reaction of Australian cultivars of oats and barley to infection by Fusarium graminearum Group 1, Aust. J. Exp. Agr. 34, 655–658.CrossRefGoogle Scholar
  261. Nettevich E.D., Vlasenko N.M. (1985) Results of evaluating the barley collection in the central nonchernozem zone, Sbornik Nauchn. Trud. Prikl. Bot. Gen. Selektsii 95, 28–31.Google Scholar
  262. Nevo E. (1992) Origin, evolution, population genetics and resources of wild barley, Hordeum spontaneum, in the Fertile Crescent, in: Shewry P.R. (Ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, Wallingford, UK, pp. 19–43.Google Scholar
  263. Newton A.C. (1990) Detection of components of partial resistance to mildew (Erysiphe graminis f. sp. hordei) incorporated into advanced breeding lines of barley using measurement of fungal cell wall sterol, Plant Pathol. 39, 598–602.CrossRefGoogle Scholar
  264. Newton A.C., Thomas W.T.B. (1994) Detection of tolerance of barley cultivars to infection by powdery mildew (Erysiphe graminis f.sp. hordei), Euphytica 75, 179–187.CrossRefGoogle Scholar
  265. Newton A.C., Begg G., Swanston J.S. (2009) Deployment of diversity for enhanced crop function, Ann. Appl. Biol. 154, 309–322.CrossRefGoogle Scholar
  266. Newton A.C., Guy D.C., Gaunt R.E., Thomas W.T.B. (2000) The effect of powdery mildew inoculum pressure and fertilizer levels on disease tolerance in spring barley, J. Plant Dis. Prot. 107, 67–73.Google Scholar
  267. Newton A.C., Thomas W.T.B., Guy D.C., Gaunt R.E. (1998) The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley, Field Crop. Res. 55, 45–56.CrossRefGoogle Scholar
  268. Niks R.E., Rubiales D. (2002) Detection of potentially durable resistance mechanisms in plants to specialised fungal pathogens, Euphytica 124, 201–216.CrossRefGoogle Scholar
  269. Nordborg M., Borevitz J.O., Bergelson J., Berry C.C., Chory J., Hagenblad J., Kreitman M., Maloof J.N., Noyes T., Oefner P.J., Stahl E.A., Weigel D. (2002) The extent of linkage disequilibrium in Arabidopsis thaliana, Nat. Genet. 30, 190–193.PubMedCrossRefGoogle Scholar
  270. Nover I., Lehmann C.O. (1966) Resistenzigenschaften im Gerstenund Weizensortiment Gatersleben 6. Prüfung von Gersten auf ihr Verhalten gegen Gelbrost (Puccinia striiformis West. syn. P. glumarum (Schm.) Erikss. et Henn.), Die Kulturpflanze 14, 257–262.CrossRefGoogle Scholar
  271. Nover I., Lehmann C.O. (1970) Resistance characters in the barley and wheat collection gatersleben [Resistenzeigenschaften im Gersten — und Weizensortiment Gatersleben — 13. Prüfung von Wintergersten-Neuzugängen Auf Ihr Verhalten Gegen Gelbrost, Puccinia Striiformis West], Die Kulturpflanze 18, 107–108.CrossRefGoogle Scholar
  272. Nover I., Lehmann C.O. (1974) Resistance in the barley and wheat collection Gatersleben. 18. Screening spring barleys for their reaction to leaf rust (Puccinia hordei Otth.) [Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben 18. Prüfung von Sommergersten auf ihr Verhalten gegen Zwergrost (Puccinia hordei Otth)], Die Kulturpflanze 22, 25–43.CrossRefGoogle Scholar
  273. Nover I., Lehmann C.O. (1975) Resistance in the barley and wheat collection Gatersleben. 19. Testing spring barleys for their reaction to race 24 of stripe rust (Puccinia striiformis West.) [Resistenzeigenschaften im Gersten — und Weizensortiment Gatersleben — 19. Prüfung von Sommergersten auf ihr Verhalten gegen Gelbrost, Puccinia striiformis West., Rasse 24], Die Kulturpflanze 23, 75–81.CrossRefGoogle Scholar
  274. Nover I., Mansfeld R. (1955) Resistenzeigenschaften im Gersten und Weizensortiment Gatersleben, Die Kulturpflanze 3, 105–113.CrossRefGoogle Scholar
  275. Nover I., Mansfeld R. (1956) Resistenzeigenschaften im Gersten und Weizensortiment Gatersleben II, Die Kulturpflanze 4, 341–349.CrossRefGoogle Scholar
  276. Nover I., Lehmann C.O., Seidenfaden A. (1976) Resistance in the Gatersleben barley and wheat collection 20. Testing of barley for reaction to loose smut Ustilago nuda, Kulturpflanze 24, 237–248.CrossRefGoogle Scholar
  277. Oak M.D., Tamhankar S.A., Rao V.S., Bhosale S.B. (2004) Relationship of HMW, LMW glutenin subunits and γ-gliadins with gluten strength in Indian durum wheats, J. Plant Biochem. Biot. 13, 51–55.Google Scholar
  278. Okunowski I. (1990) Untersuchungen von Gersten aus dem Gaterslebener Weltsortiment auf Resistenz gegen Gelbrost Puccinia striiformis West. unter besonderer Berücksichtigung der Feldresistenz, Diss. Akad. Landwirtschaftswissenschaften, Berlin.Google Scholar
  279. Onishkova M.G. (1987) Immunity characteristics in Asian barley in the northern Kazakhstan, Selektsionno-Geneticheskie Issledovanijya pri Vyvedenii Novykh Sortov Polevykh Kul’tur Severnogo-Kazkhstana, 89–92.Google Scholar
  280. Oury F.-X., Leenhardt F., Rémésy C., Chanliaud E., Duperrier B., Balfourier F., Charmet G. (2006) Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat, Eur. J. Agron. 25, 177–185.CrossRefGoogle Scholar
  281. Pagnotta M.A., Impiglia A., Tanzarella O.A., Nachit M.M., Porceddu E. (2004) Genetic variation of the durum wheat landrace Haurani from different agro-ecological regions, Genet. Resour. Crop Ev. 51, 863–869.CrossRefGoogle Scholar
  282. Panfili G., Fratianni A., Irano M. (2004) Improved Normal-Phase High-Performance Liquid Chromatography Procedure for the Determination of Carotenoids in Cereals, J. Agr. Food Chem. 52, 6373–6377.CrossRefGoogle Scholar
  283. Panga X.P., Lethaya J. (2000) Challenge of Timing Nitrogen Availability to Crop Nitrogen Requirements, Soil Sci. Soc. Am. J. 64, 247–253.CrossRefGoogle Scholar
  284. Papa R., Attene G., Barcaccia G., Ohgata A., Konishi T. (1998) Genetic diversity in landrace populations of Hordeum vulgare L. from Sardinia, Italy, as revealed by RAPDs, isozymes and morphophenological traits, Plant Breeding 117, 523–530.CrossRefGoogle Scholar
  285. Papakosta D.K., Garianas A.A. (1991) Nitrogen and dry matter accumulation, remobilisation, and losses for Mediterranean wheat during grain filling, Agron. J. 83, 864–870.CrossRefGoogle Scholar
  286. Parry M.A.J., Shewry P.R. (2003) Genotype-phenotype: narrowing the gap, Ann. Appl. Biol. 142, 115.CrossRefGoogle Scholar
  287. Passiuora J.B. (1996) Drought and drought tolerance, Plant Growth Regul. 20, 79–83.CrossRefGoogle Scholar
  288. Pecetti L., Boggini G., Gorham J. (1994) Performance of durum wheat landraces in a Mediterranean environment (eastern Sicily), Euphytica 80, 191–199.CrossRefGoogle Scholar
  289. Pecetti L., Damania A.B., Jana J. (1992) Practical problems in large-scale germplasm evaluation. A case study in durum wheat, FAO/IBPGR PI, Genet. Res. Newsl. 88/89, 5–10.Google Scholar
  290. Pecetti L., Doust M.A., Calcagno L., Paciti C.N., Boggini G. (2002) Variation of morphological and agronomical traits and protein composition in durum wheat germplasm from Eastern Europe, Genet. Resour. Crop Ev. 48, 601–620.Google Scholar
  291. Pecetti L., Doust M.A., Calcagno L., Raciti C.N., Boggini G. (2001) Variation of morphological and agronomical traits, and protein composition in durum wheat germplasm from Eastern Europe, Genet. Resour. Crop Ev. 48, 609–620.CrossRefGoogle Scholar
  292. Pedrechi R., Cisneros-Zevallos L. (2006) Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.), J. Agr. Food Chem. 54, 4557–4567.CrossRefGoogle Scholar
  293. Perkowski J., Kiecana I., Chelkowski J. (1995) Susceptibility of barley cultivars and lines to Fusarium infection and mycotoxin accumulation in kernels. J. Phytopathol. 143, 547–551.CrossRefGoogle Scholar
  294. Perkowski J., Kiecana I., Schumacher U., Muller H.M., Chelkowsi J., Golinski P. (1997) Head infection and accumulation of Fusarium toxin in kernels of 12 barley genotypes inoculated with Fusarium graminearum isolates of two chemotypes, Eur. J. Plant Pathol. 103, 85–90.CrossRefGoogle Scholar
  295. Peterson D.M. (2004) Oat — a multifunctional grain, Proceedings of the 7th International Oat Conference, Helsinki, Finland, in: Peltonen-Sainio P., Topi-Hulmi M. (Eds.), Jokioinen: MTT Agrifood Research Finland, Agrifood Res. Rep. 51, 21–25.Google Scholar
  296. Peusha H., Lebedeva T., Prilinn O., Enno T. (2002) Genetic analysis of durable powdery mildew resistance in a common wheat line, Hereditas 136, 201–206.PubMedCrossRefGoogle Scholar
  297. Piffanelli P., Ramsay L., Waugh R., Benabdelmouna A., D’Hont A., Hollricher K., Jørgensen Jø.H., Schulze-Lefert P., Panstruga R. (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew, Nature 430, 887–891.PubMedCrossRefGoogle Scholar
  298. Pinheiro de Carvalho M.Â.A., Slaski J.J., Abreu I., Ganança F.T., dos Santos T.M.M., Freitas L., Clemente Vieira M.R., Nunes A., Domingues A., Taylor G.J. (2004) Factors contributing to the development of aluminium resistance in the Madeiran maize germplasm, J. Plant Nutr. Soil Sc. 167, 93–98.CrossRefGoogle Scholar
  299. Pinheiro de Carvalho M.Â.A., Slaski J.J., dos Santos T.M.M., Ganança F.T., Abreu I., Taylor G.J., Clemente Vieira M.R., Popova T.N., Franco E. (2003) Identification of aluminium resistant genotypes among madeiran regional wheats, Commun. Soil Sci. Plan. 34, 2967–2979.CrossRefGoogle Scholar
  300. Pinheiro de Carvalho M.A.A., Ganança I.F.T., Abreu I., Sousa N.F., dos Santos T.M.M., Vieira Clemente R.M., Motto M. (2008) Evaluation of the maize (Zea mays L.) diversity on the Archipelago of Madeira, Genet. Resour. Crop Ev. 55, 221–233.CrossRefGoogle Scholar
  301. Pommer G. (1990) Accumulation and translocation of nitrogen in cultivars of wheat with different demands for nutrition, in: El Bassam et al. (Eds.), genetic aspects of plant nutrition, Kluwer Academic Publishers, 1990.Google Scholar
  302. Proeseler G., Hartleb H., Kopahnke D., Lehmann Chr. O. (1989) Resistenzeigenschaften im Gersten — und Weizensortiment Gatersleben — 29. Prüfung von Gersten auf ihr Verhalten gegenüber dem Milden Gerstenmosaik-Virus (barley mild mosaic virus, BaMMV), Gerstengelbmosaik-Virus (barley yellow mosaic virus, BaYMV), Drechslera teres (Sacc.) Shoem. und Puccinia hordei Otth., Die Kulturpflanze 37, 145–154.CrossRefGoogle Scholar
  303. Queen R.A., Gribbon B.M., James C., Jack P., Favell A.J. (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat, Mol. Genet. Genomics 271, 91–97.PubMedCrossRefGoogle Scholar
  304. Raciti C.N., Doust M.A., Lombardo G.M., Boggini G., Pecetti L. (2003) Characterization of durum wheat mediterranean germplasm for high and low molecular weight glutenin subunits in relation with quality, Eur. J. Agron. 19, 373–382.CrossRefGoogle Scholar
  305. Rakszegi M., Láng L., Bedõ Z. (2006) Selection of wheat genotypes adaptable to organic farming conditions using classical and molecular breeding methods, in: Bedõ Z., Kovács G. (Eds.), Organic breeding and cultivation of cereals, Agroinform Publishing Ltd. Budapest, pp. 83–88.Google Scholar
  306. Rasmusson D.C., Philips R.L. (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis, Crop Sci. 37, 303–310.CrossRefGoogle Scholar
  307. Rebourg C., Chastanet M., Gouesnard B., Welcker C., Dubreuil P., Charcosset A. (2003) Maize introduction into Europe: the history reviewed in the light of molecular data, Theor. Appl. Genet. 106, 895–903.PubMedGoogle Scholar
  308. Rebourg C., Gouesnard B., Charcosset A. (2001) Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation, Heredity 86, 574–587.PubMedCrossRefGoogle Scholar
  309. Reif J.C., Hamrit S., Heckenberger M., Schipprack W., Maurer H.P., Bohn M., Melchinger A.E. (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks, Theor. Appl. Genet. 111, 906–913.PubMedCrossRefGoogle Scholar
  310. Reinhold M., Sharp E.L. (1986) Resistance sources in barley to Puccinia hordei, Cereal Rusts Bull. 14, 75–83.Google Scholar
  311. Richards R.A. (1982) Breeding and selecting for drought resistance in wheat, in: Drought Resistance in Crops with Emphasis on Rice, IRRI, Los Banos, Philippines, pp. 303–316.Google Scholar
  312. Rigina S.I. (1966) Izuchenie ustoychivosti yachmenya k infekcionnym zabolevaniyam [Study of resistance of barley to infectious diseases], Can. Agr. Sci. Diss., Leningrad, 196 p.Google Scholar
  313. Rochev M.V., Levitin M.M. (1986) Resistance of barley varieties to Bipolaris sorokiniana (Sacc.) Shoemaker in the central Urals, Sibirski Vestnik Selskokhozyaistvennoi Nauk 6, 18–21.Google Scholar
  314. Roelfs A.P. (1988) Resistance to leaf and stem rust of wheat, in: Simmonds N.W., Rajaram S. (Eds.), Breeding strategies for resistance to the rusts of wheat, México CIMMYT.Google Scholar
  315. Rubiales D., Niks R.E. (2000) Combination of mechanisms of resistance to rust fungi as a strategy to increase durability, Opt. Méditerranéennes 40, 333–339.Google Scholar
  316. Ruiz M., Aguiriano E. (2004) Analysis of duplication in the Spanish durum wheat collection maintained in the CRF-INIA on the basis of agro-morphological traits and gliadin proteins, Genet. Resour. Crop Ev. 51, 231–235.CrossRefGoogle Scholar
  317. Ruiz M., Martín I. (2000) Spanish landraces collection of durum wheat maintained at the CRF-INIA, Opt. Mediterraneennes Serie A 40, 601–606.Google Scholar
  318. Ruiz De Galarreta J.I., Alvarez A. (2001) Morphological classification of maize landraces from northern Spain, Genet. Resour. Crop Ev. 48, 391–400.CrossRefGoogle Scholar
  319. Russell J.R., Booth A., Fuller J.D., Baum M., Ceccarelli S., Grando S., Powell W. (2003) Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan, Theor. Appl. Genet. 107, 413–421.PubMedCrossRefGoogle Scholar
  320. Sabri N., Dominy P.J., Clarke D.D. (1997) The relative tolerances of wild and cultivated oats to infection by Erysiphe graminis f.sp. avenae: II. The effects of infection on photosynthesis and respiration, Physiol. Mol. Plant P. 50, 321–335.CrossRefGoogle Scholar
  321. Sackville Hamilton N.R., Chorlton K.H. (1997) Regeneration of Accessions in Seed Collections: a Decision Guide, Handbook for Genebanks No. 5, International Plant Genetic Resources Institute, Rome.Google Scholar
  322. SANCO (2006) Commission directive of providing for certain derogations for acceptance of agricultural landraces and cultivars which are naturally adapted to the local and regional conditions and threatened by genetic erosion and for marketing of seed and seed potatoes of those landraces and cultivars, SANCO/3322/2006 Rev. 14.Google Scholar
  323. Sato K., Takeda K. (1994) Sources of resistance to net blotch in barley germplasm, Bull. Res. Inst. Bioresour., Okayama Univ. 2, 91–102.Google Scholar
  324. Schaller C.W., Wiebe G.A. (1952) Sources of resistance to net blotch of barley, Agron. J. 44, 334–336.CrossRefGoogle Scholar
  325. Schaller C.W., Qualset C.O., Rutger J.N. (1964) Inheritance and linkage of the Yd2 gene conditioning resistance to barley yellow dwarf virus disease in barley, Crop Sci. 4, 544–548.CrossRefGoogle Scholar
  326. Semeane Y. (1995) Importance and control of barley leaf blights in Ethiopia, Rachis 14, 83–89.Google Scholar
  327. Shchelko L.G. (1969) Study of initial material of barley for resistance to loose smut, Sp. tr. V Vsesoyuzn. soveshchaniya po immunitetu (Kiev) 5, 7–12.Google Scholar
  328. Shiva V. (2007) Manifestos on the future of food and seed, Cambridge, Massachusetts.Google Scholar
  329. Shtaya M.J.Y., Sillero J.C., Rubiales D. (2006a) Screening for resistance to leaf rust (Puccinia hordei) in a collection of Spanish barleys, Breeding Sci. 56, 173–177.CrossRefGoogle Scholar
  330. Shtaya M.J.Y., Sillero J.C., Rubiales D. (2006b) Search for partial resistance against Puccinia hordei in barley landraces from Fertile Crescent, Plant Breeding 125, 343–346.CrossRefGoogle Scholar
  331. Shtaya M.J.Y., Sillero J.C., Rubiales D. (2006c) Identification of resistance against a new pathotype of Puccinia hordei with virulence for the resistance gene Rph7, Eur. J. Plant Pathol. 115, 309–321.CrossRefGoogle Scholar
  332. Siddique K.H.M., Belfort R.K., Tennant D. (1990) Root:shoot ratios of old and modern, tall and semidwarf wheats in mediterranean environment, Plant Soil 121, 89–98.CrossRefGoogle Scholar
  333. Simmonds N.W. (1979) Principles of Crop Improvement, Longman, New York, p. 408.Google Scholar
  334. Skou J.P., Haahr V. (1985) The barleys in Nordic Gene Bank screened for resistance against barley leaf stripe (Drechslera graminea), Nordisk Jordbrugsforskning 67, 262–263.Google Scholar
  335. Skou J.P., Nielsen B.J., Haahr V. (1992) The effectivity of Vada resistance against leaf stripe in barley varieties, Nordisk Jordbrugsforskning 74, 34.Google Scholar
  336. Skou J.P., Nielsen B.J., Haahr V. (1994) Evaluation and importance of genetic resistance to leaf stripe in western European barleys, Acta Agr. Scand. B, Soil Plant Sci. 44, 98–106.Google Scholar
  337. Slaski J.J. (1992) Physiological and genetical aspects of the tolerance of cereals to soil acidity and to toxic effects of aluminium ions, Bull. IHAR 183, 37–45.Google Scholar
  338. Smirnova Z.G., Trofimovskaya A.Ya. (1985) Sources of resistance of barley to net blotch, Sb. Nauchn. Tr. Prikl. Bot., Benet. i Sel. 95, 52–56.Google Scholar
  339. Stodart B.J., Raman H., Coombes N., Mackay M. (2007) Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions, Genet. Resour. Crop Ev. 54, 759–766.CrossRefGoogle Scholar
  340. Stubbs R.W. (1985) The Cereal rusts, Vol. 2, Disease, Epidemiology and Control, in: Roelfs A., Bushnell W.R. (Eds.), Orlando, Academic Press, pp. 61–101.Google Scholar
  341. Su L., Maric A., Kostic B., Mikic K. (1989) Some properties of Helminthosporium gramineum and barley resistance to the pathogen, Zastita Bilja 40, 151–164.Google Scholar
  342. Surin N.A. (1989) Source material and problems of breeding spring barley in the eastern Siberia, Sbornik Nauchn. Trud. Prikl. Bot. Gen. Selektsii 129, 37–41.Google Scholar
  343. Farmers of the Conservation and Development of Genetic Diversity, IPGRI 2002, Managing Plant Genetic Diversity, in: Engels J.M.M., Ramanatha Rao V., Brown A.H.D., Jackson M.T., Cabi Publishing, Wallingford, UK, pp. 23–31.Google Scholar
  344. Takeda K. (1992) Current topics on the scab disease resistance in barely and wheat, Proc. Japan Assoc. Mycotoxicol. 36, 13–17.Google Scholar
  345. Takeda K., Heta H. (1989) Establishing the testing method and a search for the resistant varieties to Fusarium head blight in barley, Japan J. Breed. 39, 203–216.Google Scholar
  346. Tang C., Asseng S., Diatloff E., Rengel Z. (2003) Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: effects of rainfall, liming and nitrogen application, Plant Soil 254, 349–360.CrossRefGoogle Scholar
  347. Teklu Y., Hammer K., Huang X.Q., Röder M.S. (2005) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces, Genet. Resour. Crop Ev. 100, 1–12.Google Scholar
  348. Tenaillon M.I., Sawkins M.C., Long A.D., Gaut R.L., Doebley J.F., Gaut B.S. (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.), Proc. Natl Acad. Sci. (USA) 98, 9161–9166.CrossRefGoogle Scholar
  349. Teshome A., Brown A.H.D., Hodgkin T. (2001) Diversity in landraces of cereal and legume crops, in: Janick J. (Ed.), Plant Breeding Reviews, John Wiley & Sons, Inc., pp. 221–261.Google Scholar
  350. Thomas W.T.B. (2003) Prospects for molecular breeding of barley, Ann. Appl. Biol. 142, 1–12.CrossRefGoogle Scholar
  351. Tilman D. (1996) The greening of the green evolution, Nature 396, 211–212.CrossRefGoogle Scholar
  352. Tokatlidis I.S., Koutsika-Sotiriou M., Fasoulas A.C. (2001) The development of density-independent hybrids in maize, Maydica 46, 21–25.Google Scholar
  353. Tollenaar M., Wu J. (1999) Yield improvement in temperate maize is attributable to greater stress tolerance, Crop Sci. 39, 1597–1604.CrossRefGoogle Scholar
  354. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006) A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat, Science 314, 1298–1301.PubMedCrossRefGoogle Scholar
  355. Upadhyay M.K., Prakash S. (1977) Identification of diverse genes conferring resistance to indian races of stripe rust of barley, Indian J. Genet. Plant Breeding 37, 68–72.Google Scholar
  356. Valamoti S.M. (2002) Food remains from Bronze Age Archondiko and Mesimeriani Toumba in northern Greece? Veg. Hist. Archaeobot. 11, 17–22.CrossRefGoogle Scholar
  357. Van Beem J. (1997) Variation in nitrogen use efficiency and root system size in temperate maize genotypes, in: Edmeades G.O., Banziger M., Mickelson H.R., Pena-Valdivia C.B. (Eds.), Developing drought- and low-N-tolerant maize, Cimmyt, Mexico.Google Scholar
  358. Van Dijk K.V., Parlevliet J.E., Kema G.H.J., Zeven A.C., Stubbs R.W. (1988) Characterization of the durable resistance to yellow rust in old winter wheat cultivars in the Netherlands, Euphytica 38, 149–158.Google Scholar
  359. Van Ginkel M., Rajaram S. (1992) Breeding for durable resistance to diseases in wheat: An international perspective, Durability of Disease Resistance, in: Jacobs Th., Parlevliet J.E. (Eds.), Kluwer Academic Publ., Dordrecht, pp. 259–272.Google Scholar
  360. Van Leur J.A.G. (1989) Barley pathology, Cereal Improvement Program Annual Report, 1988, pp. 122–130.Google Scholar
  361. Van Leur J.A.G., Ceccarelli S., Grando S. (1989) Diversity for disease resistance in barley landraces from Syria and Jordan, Plant Breeding 103, 324–335.CrossRefGoogle Scholar
  362. Van Treuren R., Tchoudinova I., van Soest L.J.M., van Hintum T.J.L. (2006) Marker assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data, Genet. Resour. Crop Ev. 53, 43–52.CrossRefGoogle Scholar
  363. Vaz Patto M.C., Moreira P.M., Almeida N., Satovic Z., Pêgo S. (2008) Genetic diversity evolution through participatory maize breeding in Portugal, Euphytica 161, 283–291.CrossRefGoogle Scholar
  364. Vaz PattoM. C., Satovic Z., Pêgo S., Fevereiro P. (2004) Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers, Euphytica 137, 63–72.CrossRefGoogle Scholar
  365. Vechet L., Vojácková M. (2005) Use of Detached Seedling Leaf Test to Evaluate Wheat Resistance to Septoria Tritici Blotch, Czech J. Genet. Plant Breeding 41, 112–116.Google Scholar
  366. Velibekova E.L. (1981) Susceptibility of barley to root rots, Selektsiya i Semenovodstvo, USSR 10, 20–21.Google Scholar
  367. Wahl I., Anikster Y., Manisterski J. (1988) Evolution of host-parasite relations in the Puccinia hordei — Hordeum ssp. system at the center of origin, Proc. 7th Cereal Rusts Conference, Vienna, pp. 122–123.Google Scholar
  368. Waines J.G., Ehdaie B. (2007) Domestication and Crop Physiology: Roots of Green Revolution Wheat, Ann. Bot. 100, 991–998.PubMedCrossRefGoogle Scholar
  369. Walther U., Lehmann C.O. (1980) Resistenzeigenschaften im Gersten — und Weizensortiment Gatersleben — 24. Prüfung von Sommer und Wintergersten auf ihr Verhalten geganuber Zwergrost (Puccinia hordei Otth), Die Kulterpfanze 28, 227–238.CrossRefGoogle Scholar
  370. Weltzien E. (1988) Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East, Plant Breeding 101, 95–106.CrossRefGoogle Scholar
  371. Wesenberg D.M., Briggle L.W., Smith D.H. (1992) Germplasm collection, preservation and utilization, in: Marshall H.G., Sorrells M.E. (Eds.), Oat Science and Technology, American Society of Agronomy, Madison Wisconsin, pp. 793–820.Google Scholar
  372. Wiberg A. (1974a) Genetical studies of spontaneous sources of resistance to powdery mildew in barley, Hereditas 77, 89–148.PubMedCrossRefGoogle Scholar
  373. Wiberg A. (1974b) Sources of resistance to powdery mildew in barley, Hereditas 78, 1–40.PubMedCrossRefGoogle Scholar
  374. Wieseler F., Horst W.J. (1994) Root growth and nitrate utilization of maize cultivars under field conditions, Plant Soil 163, 267–277.CrossRefGoogle Scholar
  375. Witcombe J.R., Joshi A., Joshi K.D., Shapit B.R. (1996) Farmer participatory crop improvement I: Varietal selection and breeding methods and their impact on biodiversity, Exp. Agr. 32, 445–460.CrossRefGoogle Scholar
  376. Wolfe M.S., Schwarzbach E. (1978) Patterns of race changes in powdery mildews, Ann. Rev. Phytopathol. 16, 159–180.CrossRefGoogle Scholar
  377. Wright A.J., Heale J.B. (1984) Adult plant resistance to powdery mildew (Erysiphe graminis) in three barley cultivars, Plant Pathol. 33, 225–231.CrossRefGoogle Scholar
  378. Wurtzel E.T. (2004) Genomics, genetics and biochemistry of maize carotenoid biosynthesis, Recent. Adv. Phytochem. 38, 85–110.CrossRefGoogle Scholar
  379. Yahiaoui S., Igartua E., Moralejo M., Ramsay L., Molina-Cano J.L., Ciudad F.J., Lasa J.M., Gracia M.P., Casas A.M. (2008) Patterns of genetic and eco-geographical diversity in Spanish barleys, Theor. Appl. Genet. 116, 271–282.PubMedCrossRefGoogle Scholar
  380. Yahyaoui A.H., Sharp E.L., Reinhold M. (1988) New sources of resistance to Puccinia hordei in barley landrace cultivars, Phytopathology 78, 905–908.CrossRefGoogle Scholar
  381. Yasuda S., Rikiishi K. (1997) Screening of the World Barley Collection for resistance to barley yellow mosaic virus, Barley Genet. Newsl. 28, 64–66.Google Scholar
  382. Yau S.-K. (2002) Comparison of European with West Asian and North African winter barleys in tolerance to boron toxicity, Euphytica 123, 307–314.CrossRefGoogle Scholar
  383. Yau S.-K., Nachit M.M., Ryan J., Hamblin J. (1995) Phenotypic variation in boron-toxicity tolerance at seedling stage in durum wheat (Triticum durum), Euphytica 83, 185–191.CrossRefGoogle Scholar
  384. Yitbarek S., Berhane L., Fikadu A., VanLeur J.A.G., Grando S., Ceccarelli S. (1998) Variation in Ethiopian barley landrace populations for resistance to barley leaf scald and net blotch, Plant Breeding 117, 419–423.CrossRefGoogle Scholar
  385. Zeven A.C. (1996) Results of activities to maintain landraces and other material in some European countries in situ before 1945 and what we may learn from them, Genet. Resour. Crop Ev. 43, 337–341.CrossRefGoogle Scholar
  386. Zeven A.C. (1998) Landraces: a review of definitions and classifications, Euphytica 104, 127–139.CrossRefGoogle Scholar
  387. Zeven A.C. (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review, Euphytica 110, 181–191.CrossRefGoogle Scholar
  388. Zeven A.C. (2000) Traditional maintenance breeding of landraces: 1. Data by crop, Euphytica 116, 65–85.CrossRefGoogle Scholar
  389. Zhang X., Jin Y., Rudd R., Hall T., Rudd J., Bockelman H. (2000) Fusarium head blight resistant sources of spring wheat identified from the USDA collection. National Fusarium Head Blight Forum, Kinko’s, Okemos, MI.Google Scholar
  390. Zhang Z.J. (1995) Evidence of durable resistance in nine Chinese land races and one Italian cultivar of Triticum aestivum to Puccinia striiformis, Eur. J. Plant Pathol. 101, 405–409.CrossRefGoogle Scholar
  391. Zhang P., Dreisigacker S., Buerkert A., Alkhanjari S., Melchinger A.E., Warburton M.L. (2006) Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers, Genet. Resour. Crop Ev. 56, 1351–1360.CrossRefGoogle Scholar
  392. Zhou L.-L., Bai G.-H., Carver B., Zhang D.-D. (2007) Identification of new sources of aluminum resistance in wheat, Plant Soil 297, 105–118.CrossRefGoogle Scholar
  393. Zohary D., Hopf M. (1988) Domestication of Plants in the Old World, Clarendon, Oxford.Google Scholar
  394. Zohary D., Hopf M. (2000) Domestication of plants in the Old World, New York: Oxford University Press, 3rd ed, 316 p.Google Scholar

Copyright information

© INRA, EDP Sciences 2009

Authors and Affiliations

  • A. C. Newton
    • 1
  • T. Akar
    • 2
  • J. P. Baresel
    • 3
  • P. J. Bebeli
    • 4
  • E. Bettencourt
    • 5
  • K. V. Bladenopoulos
    • 6
  • J. H. Czembor
    • 7
  • D. A. Fasoula
    • 8
  • A. Katsiotis
    • 9
  • K. Koutis
    • 10
  • M. Koutsika-Sotiriou
    • 10
  • G. Kovacs
    • 11
  • H. Larsson
    • 12
  • M. A. A. Pinheiro de Carvalho
    • 13
  • D. Rubiales
    • 14
  • J. Russell
    • 1
  • T. M. M. Dos Santos
    • 15
  • M. C. Vaz Patto
    • 16
  1. 1.SCRIDundeeScotland, UK
  2. 2.Central Research Institute for Field CropsUlus-AnkaraTurkey
  3. 3.Technical University of Munich, Chair of Organic FarmingFreisingGermany
  4. 4.Department of Plant Breeding and BiometryAgricultural University of AthensAthensGreece
  5. 5.Genetic Resources, Ecophysiology and Plant Bredding UnitInstituto Nacional dos Recursos Biológicos, I.P. (INRB, I.P.)OeirasPortugal
  6. 6.NAGREF -Cereal InstituteThermi, ThessalonikiGreece
  7. 7.Plant Breeding and Acclimatization Institute — IHAR RadzikowBloniePoland
  8. 8.Agricultural Research InstituteNicosiaCyprus
  9. 9.Department of Plant Breeding and BiometryAgricultural University of AthensAthensGreece
  10. 10.Laboratory of Genetics and Plant BreedingFaculty of Agriculture, Aristotle University of ThessalonikiThessalonikiGreece
  11. 11.Department of Genetic Resources and Organic Plant BreedingAgricultural Research Institute of the Hungarian Academy of SciencesMartonvasarHungary
  12. 12.Swedish University of Agricultural SciencesAlnarpSweden
  13. 13.ISOPlexis Banco de Germoplasma, BGR, CEMUniversidade da MadeiraFunchalPortugal
  14. 14.Institute for Sustainable Agriculture, CSICAlameda del Obispo s/n, Apdo. 4084CordobaSpain
  15. 15.ISOPlexis Banco de Germoplasma, BGR, CEMUniversidade da MadeiraFunchalPortugal
  16. 16.Instituto de Tecnologia Química e BiológicaOeirasPortugal

Personalised recommendations