Skip to main content

MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems

Abstract

Realistic assessments of sustainability are often viewed as typical decision-making problems requiring multi-criteria decision-aid (MCDA) methods taking into account the conflicting objectives underlying the economic, social and environmental dimensions of sustainability, and the different sources of knowledge representing them. Some MCDA-based studies have resulted in the development of sustainable agricultural systems, but the new challenges facing agriculture and the increasing unpredictability of their driving forces highlight the need for faster ex ante (‘Before-the-event’) assessment frameworks. These frameworks should also (i) provide a more realistic assessment of sustainability, by integrating a wider range of informal knowledge, via the use of qualitative information; (ii) address alternative scales, such as cropping system level, improving granularity for the handling of sustainability issues and (iii) target a larger panel of decision-makers and contexts. We describe here the MASC model, which is at the center of a framework addressing these objectives. The MASC model has at its core a decision tree that breaks the sustainability assessment decisional problem down into simpler units as a function of sustainability dimensional structure (economic, social and environmental), generating a vector of 32 holistic ‘mixed’ (quantitative and qualitative) elementary criteria rating cropping systems. The assessment process involves the calculation of these criteria, their homogenization into qualitative information for input into the model and their aggregation throughout the decision tree based on ‘If-Then’ decision rules, entered by the user. We present the model and describe its first implementation for the evaluation of four cropping systems generated from expert knowledge, and discuss its relevance to the objectives cited above. The MASC model has several advantages over existing methods, due to its ability to handle qualitative information, its transparency, flexibility and feasibility.

This is a preview of subscription content, access via your institution.

References

  • Andreoli M., Rossi R., Tellarini V. (1999) Farm sustainability assessment: some procedural issues, Landscape Urban Plan. 46, 41–50.

    Article  Google Scholar 

  • Baker D., Bridges D., Hunter R., Johnson G., Krupa J., Murphy J., Sorenson K. (2002) Guidebook to Decision-Making Methods, WSRC-IM-2002-00002, Department of Energy, USA.

  • Bergez J.E., Colbach N., Crespo O., Garcia F., Jeuffroy M.H., Justes E., Loyce C., Munier-Jolain N., Sadok W. (2008) Designing crop management systems by simulation, in: Donatelli M., Hatfield J., Rizzoli A. (Eds.), Farming Systems Design 2007, Int. Symposium on Methodologies on Integrated Analysis on Farm Production Systems, Catania (Italy), 10–12 September 2007, book 2 — Fieldfarm scale design and improvement, pp. 4–5.

  • Bockstaller C., Girardin P. (2006) Mode de calcul des indicateurs agri-environnementaux de la méthode INDIGO (Version 1.61 du logiciel), INRA COLMAR/ARAA.

  • Bockstaller C., Girardin P., van der Werf H.M.G. (1997) Use of agro-ecological indicators for the evaluation of farming systems, Eur. J. Agron. 7, 261–270.

    Article  Google Scholar 

  • Bohanec M. (2003) Decision support, in: Mladeniæ D., Lavraè N., Bohanec M., Moyle S. (Eds.), Data mining and decision support: Integration and collaboration, Kluwer Academic Publishers, pp. 23–35.

  • Bohanec M., Cortet J., Griffiths B., Znidarsic M., Debeljak M., Caul S., Thompson J., Krogh P.H. (2007) A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality, Pedobiologia 51, 239–250.

    Article  Google Scholar 

  • Bohanec M., Messéan M., Scatasta S., Angevin F., Griffiths B., Krogh P.H., Znidarsic M., Dzeroski S. (2008) A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops, Ecol. Model. (in press), doi:10.1016/j.ecolmodel.2008.02.016.

  • Bohanec M., Zupan B., Rajkovic V. (2000) Applications of qualitative multi attribute decision models in health care, Int. J. Med. Informat. 58-59, 191–205.

    Article  CAS  Google Scholar 

  • Braband D., Geier U., Köpke U. (2003) Bio-resource evaluation within agri-environmental assessment tools in different European countries, Agr. Ecosyst. Environ. 98, 423–434.

    Article  Google Scholar 

  • Calker K.J. van, Berentsen P.B.M., Boer I.J.M. de, Giesen G.W.J., Huirne R.B.M. (2007) Modelling worker physical health and societal sustainability at farm level: an application to conventional and organic dairy farming, Agr. Syst. 94, 205–219.

    Article  Google Scholar 

  • Champeaux C. (2006) Recours à l’utilisation de pesticides en grandes cultures : évolution de l’indicateur de fréquence de traitements au travers des enquêtes “pratiques culturales” du SCEES entre 1994 et 2001. INRA, UMR d’Agronomie de Grignon, rapport d’étude commanditée par le MAP (DGFAR), 100 p.

  • Christen O. (1998) No more definitions please! Some reflections about the ideas and principles of sustainable agriculture, in: El Bassam N., Behl R.K., Prochnow B. (Eds.), Sustainable Agriculture for Food, Energy and Industry, James & James, London, pp. 48–52.

    Google Scholar 

  • Clemen R.T. (1996) Making Hard Decisions: an Introduction to Decision Analysis, Wadsworth Publishing Company.

  • Coquil X., Blouet B., Fiorelli J.L., Mignolet C., Bazard C., Foissy D., Trommenschlager J.M., Benoît M., Meynard J.M. (2007) Prototyping connected farming systems at a small territory scale, in: Donatelli M., Hatfield J., Rizzoli A. (Eds.), Farming Systems Design 2007, Int. Symposium on Methodologies on Integrated Analysis on Farm Production Systems, Catania (Italy), 10–12 September 2007, book 2 — Field-farm scale design and improvement, pp. 120–121.

  • den Biggelaar C., Suvedi M. (2000) Farmers’ definitions, goals, and bottlenecks of sustainable agriculture in the North-Central Region, Agr. Hum. Val. 17, 347–358.

    Article  Google Scholar 

  • Dent J.B., Edward-Jones G., McGregor M.J. (1995) Simulation of ecological, social, and economic factors in agricultural systems, Agr. Syst. 49, 337–351.

    Article  Google Scholar 

  • Dogliotti S., Rossing W.A.H., Van Ittersum M.K. (2003) ROTAT, a tool for systematically generating crop rotations, Eur. J. Agron. 19, 239–250.

    Article  Google Scholar 

  • Dogliotti S., Rossing W.A.H., Van Ittersum M.K. (2004) Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay, Agr. Syst. 80, 277–302.

    Article  Google Scholar 

  • Dogliotti S., Van Ittersum M.K., Rossing W.A.H. (2005) A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay, Agr. Syst. 86, 29–51.

    Article  Google Scholar 

  • Döring T.F., Hiller A., Wehke S., Schulte G., Broll G. (2003) Biotic indicators of carabid species richness on organically and conventionally managed arable fields, Agr. Ecosyst. Environ. 98, 133–139.

    Article  Google Scholar 

  • Espinosa A., Harnden R., Walker J. (2008) A complexity approach to sustainability — Stafford Beer revisited, Eur. J. Oper. Res. 187, 636–651.

    Article  Google Scholar 

  • European Commission (2005) Impact Assessment Guidelines, 15th of June 2005 with March 2006 Update, SEC (2005) 791.

  • Figueira J., Greco S., Ehrgott M. (2005) Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, New York.

    Google Scholar 

  • Gafsi M., Legagneux B., Nguyen G., Robin P. (2006) Towards sustainable farming systems: Effectiveness and deficiency of the French procedure of sustainable agriculture, Agr. Syst. 90, 226–242.

    Article  Google Scholar 

  • Häni F., Braga F., Stämpfli A., Keller T., Fischer M., Porsche H. (2003) RISE, a tool for holistic sustainability assessment at the farm level, Int. Food Agribus. Manag. Rev. 6, 78–90.

    Google Scholar 

  • Hansen J.W. (1996) Is agricultural sustainability a useful concept? Agr. Syst. 50, 117–143.

    Article  Google Scholar 

  • Hietala-Koivu R., Järvenpää T., Helenius J. (2004) Value of semi-natural areas as biodiversity indicators in agricultural landscapes, Agr. Ecosyst. Environ. 101, 9–19.

    Article  Google Scholar 

  • Keeney R., Raiffa H. (1976) Decisions with Multiple Objectives: Performances and Value Trade-Offs, Wiley, New York.

    Google Scholar 

  • Kirchmann H., Thorvaldsson G. (2000) Challenging targets for future agriculture, Eur. J. Agron. 12, 145–161.

    Article  Google Scholar 

  • Lançon J., Reau R., Cariolle M., Munier-Jolain N., Omon B., Petit M.-S., Viaux P., Wery J. (2008) Élaboration à dire d’experts de systèmes de culture innovants, in: Reau R., Doré T. (Eds.), Systèmes de Culture Innovants et Durables: Quelles méthodes pour les mettre au point et les évaluer? Educagri Editions, Dijon, pp. 71–89.

    Google Scholar 

  • Loyce Ch., Rellier J.P., Meynard J.M. (2002) Management planning for winter wheat with multiple objectives (1): the BETHA system, Agr. Syst. 72, 9–31.

    Article  Google Scholar 

  • Ma L. (2006) Knowledge Representation Under Inherent Uncertainty in a Multi-Agent System for Land Use Planning, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 164 p.

    Google Scholar 

  • Matthies M., Giupponi C., Ostendorf B. (2007) Environmental decision support systems: current issues, methods and tools, Environ. Modell. Softw. 22, 123–127.

    Article  Google Scholar 

  • Maystre L.Y., Pictet J., Simos J. (1994) Méthodes multicritères ELECTRE, Presses Polytechniques et Universitaires Romandes, Lausanne.

    Google Scholar 

  • Mazzetto F., Bonera R. (2003) MEACROS: a tool for multi-criteria evaluation of alternative cropping systems, Eur. J. Agron. 18, 379–387.

    Article  Google Scholar 

  • Meul M., Van Passel S., Nevens F., Dessein J., Rogge E., Mulier A., Van Hauwermeiren A. (2008) MOTIFS: a monitoring tool for integrated farm sustainability, Agron. Sustain. Dev. 28, 321–332.

    Article  Google Scholar 

  • Meyer-Aurich A. (2005) Economic and environmental analysis of sustainable farming practices — a Bavarian case study, Agr. Syst. 86, 190–206.

    Article  Google Scholar 

  • Meynard J.M. (2008) Produire autrement: réinventer les systèmes de culture, in: Reau R., Doré T. (Eds.), Systèmes de Culture Innovants et Durables : Quelles méthodes pour les mettre au point et les évaluer? Educagri Editions, Dijon, pp. 11–27.

    Google Scholar 

  • MSA (Mutualité Sociale Agricole, 2006) Approche statistique des risques professionnels des non salariés agricoles : Synthèse nationale, Caisse Centrale de la MSA — Santé-Sécurité au Travail, 6 p. http://www.msa.fr/files/msafr/msafr_1166005823772_APPROCHE_DES_RISQUES_PROFESSIONNELS_DES_NON_SALARI_S_AGRICOLES_2006.pdf.

  • Munda G. (2005) Multiple criteria decision analysis and sustainable development, in: Figueira J., Greco S., Ehrgott M. (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, New York.

    Google Scholar 

  • Munda G., Nijkamp P., Rietveld P. (1994) Qualitative multicriteria evaluation for environmental management, Ecol. Econ. 10, 97–112.

    Article  Google Scholar 

  • Neher D. (1992) Ecological sustainability in agricultural systems. Definition and measurement, J. Sustain. Agr. 2, 51–61.

    Article  Google Scholar 

  • Osinski E., Meier U., Büchs W., Weickel J., Matzdorf B. (2003) Application of biotic indicators for evaluation of sustainable land use-current procedures and future developments, Agr. Ecosyst. Environ. 98, 407–421.

    Article  Google Scholar 

  • Pacini C., Wossink A., Giesen G., Vazzana C., Huirne R. (2003) Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis, Agr. Ecosyst. Environ. 95, 273–288.

    Article  Google Scholar 

  • Paoletti M.G. (1999) The role of earthworms for assessment of sustainability and as bioindicators, Agr. Ecosyst. Environ. 74, 137–155.

    Article  Google Scholar 

  • Parisi V., Menta C., Gardi C., Jacomini C., Mozzanica E. (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy, Agr. Ecosyst. Environ. 105, 323–333.

    Article  Google Scholar 

  • Phillis Y.A., Andriantiatsaholiniainan L.A. (2001) Sustainability: an ill-defined concept and its assessment using fuzzy logic, Ecol. Econ. 37, 435–456.

    Article  Google Scholar 

  • Reau R., Landé N. (2006) Evaluation a priori de systèmes de culture innovants conçus par des experts et adaptés a des contextes régionaux, Final Report on Work Package#1, ADAR project “Systèmes de cultures innovants”, 27 p.

  • Reau R. et al. (2006) Actes du Séminaire “Systèmes de culture innovants” — Projet ADAR Systèmes de culture innovants piloté par le CETIOM, Versailles, 27 juin 2006.

  • Rosnoblet J., Girardin P., Weinzaepflen E., Bockstaller C. (2006) Analysis of 15 years of agriculture sustainability evaluation methods, in: Fotyma M., Kaminska B. (Eds.), Proceedings of the 9th ESA Congress. Warsaw, Poland, September 4–6, 2006, pp. 707–708.

  • Rossing W.A.H., Meynard J.M., Van Ittersum M.K. (1997) Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands, Eur. J. Agron. 7, 271–283.

    Article  Google Scholar 

  • Saaty T.L. (1980) The Analytic Hierarchy Process, McGraw-Hill, New York.

    Google Scholar 

  • Sadok W., Angevin F., Bergez J.-E., Bockstaller C., Colomb B., Guichard L., Reau R., Doré T. (2008) Ex ante assessment of the sustainability of alternative cropping systems: implications for using multicriteria decision aid methods. A review, Agron. Sustain. Dev. 28, 163–174.

    Article  Google Scholar 

  • Sebillotte M. (1990) Système de culture, un concept opératoire pour les agronomes, in: Combe L., Picard D. (Eds.), Un point sur les systèmes de culture, INRA éditions, Paris, pp. 165–196.

    Google Scholar 

  • Schaller N. (1993) The concept of agricultural sustainability, Agr. Ecosyst. Environ. 46, 89–97.

    Article  Google Scholar 

  • Shrestha R.K., Alavalapati J.R.R., Kalmbacher R.S. (2004) Exploring the potential for silvopasture adoption in South-central Florida: an application of SWOT-AHP method, Agr. Syst. 81, 185–199.

    Article  Google Scholar 

  • Spoor G., Tijink F.G.J., Weisskopf P. (2003) Subsoil compaction: Risk, avoidance, identification and alleviation, Soil Till. Res. 73, 175–182.

    Article  Google Scholar 

  • Steen I. (1998) Phosphorus availability in the 21st Century: management of a non renewable resource, Phosphorus Potassium 217, 25–31.

    Google Scholar 

  • Stewart W.M., Hammond L.L., Van Kauwenbergh S.J. (2005) Phosphorus as a Natural Resource, in: Sims J.T., Sharpley A.N. (Eds.), Agriculture and the Environment, Agronomy Monograph No. 46, ASA, CSSA, SSSA, Madison, Wisconsin 53711 USA, pp. 3–22.

    Google Scholar 

  • Van Cauwenbergh N., Biala K., Bielders C., Brouckaert V., Franchois L., Garcia Cidad V., Hermy M., Mathijs E., Muys B., Reijnders J., Sauvenier X., Valckx J., Vanclooster M., Van der Veken B., Wauters E., Peeters A. (2007) SAFE — A hierarchical framework for assessing the sustainability of agricultural systems, Agr. Ecosyst. Environ. 120, 229–242.

    Article  Google Scholar 

  • van de Zande J.C. (1991) Computed reconstruction of field traffic patterns, Soil Till. Res. 19, 1–15.

    Article  Google Scholar 

  • Van Ittersum M., Ewert F., Heckelei T., Wery J., Alkan Olsson J., Andersen E., Bezlepkina I., Brouwer F., Donatelli M., Flichman G., Olsson L., Rizzoli A., van der Wal T., Wien J.E., Wolf J. (2007) Integrated assessment of agricultural systems a component-based framework for the European Union (SEAMLESS), Agr. Syst. 96, 150–165.

    Article  Google Scholar 

  • Vereijken P. (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms, Eur. J. Agron. 7, 235–250.

    Article  Google Scholar 

  • Vilain L., Boisset K., Girardin P., Guillaumin A., Mouchet C., Viaux P., Zahm F. (2008) La méthode IDEA indicateur de durabilité des exploitations agricoles — guide d’utilisation (ed collectif O.), Educagri éditions, Dijon, 184 p.

    Google Scholar 

  • Walter C. (2006) Sustainability assessment of land use systems, Ph.D. Thesis, University of Hannover, Hannover, Germany, 180 p.

    Google Scholar 

  • Zander P., Kächele H. (1999) Modelling multiple objectives of land use for sustainable development, Agr. Syst. 59, 311–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Doré.

About this article

Cite this article

Sadok, W., Angevin, F., Bergez, JE. et al. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 29, 447–461 (2009). https://doi.org/10.1051/agro/2009006

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro/2009006

  • cropping system
  • sustainability assessment
  • ex ante
  • MCDA
  • decision rules
  • qualitative multi-attribute decision models
  • DEXi