Annals of Forest Science

, Volume 66, Issue 1, pp 106–106 | Cite as

Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress

  • Zhi-Bin LuoEmail author
  • Ke Li
  • Xiangning Jiang
  • Andrea Polle
Original Article


  • • Mycorrhizal fungi and hydrogels (water-absorbing polymers) can improve water availability for trees. The combination of both factors for plant performance under water limitation has not yet been studied.

  • • To investigate the influence of the ectomycorrhizal fungus Paxillus involutus, hydrogel and the combination of both factors, a drought-sensitive poplar, Populus euphratica, was examined in this study.

  • • After 16 weeks of inoculation, no ectomycorrhizas were found. Nevertheless, P. involutus-inoculated poplars displayed increased concentrations of soluble sugars and osmolality, leading to an improved water status. Growth was diminished compared with non-inoculated P. euphratica. The presence of hydrogels in the rooting medium resulted in increased biomass and higher plant water content and decreased the osmolality of plant tissues. Drought markedly decreased water contents in rooting medium and plants, and leaf chlorophyll fluorescence, and stimulated the root growth, concentrations of soluble sugars and osmolality in plants. Under drought conditions, P. euphratica exhibited osmoregulation by accumulation of low-molecular-weight carbohydrates.

  • • These data indicate that adding hydrogels to soils may improve the plant performance. The reasons for improved osmoregulation by fungi and hydrogels were probably related to their stimulating influence on the formation of soluble carbohydrates under drought conditions.


drought hydrogel mycorrhizal fungus poplar carbohydrate 

Le champignon ectomycorhizien Paxillus involutus et les hydrogels influencent les performances de Populus euphratica en condition de stress hydrique


  • • Les champignons mycorhiziens et les hydrogels (polymères absorbant l’eau) peuvent améliorer la disponibilité de l’eau pour les arbres. La combinaison des deux facteurs pour améliorer la performance des plants en conditions de limitation d’eau n’a pas encore été étudiée.

  • • Pour étudier l’influence d’un champignon ectomycorhizien Paxillus involutus, des hydrogels et la combinaison des deux facteurs, un peuplier sensible à la sécheresse, Populus euphratica, a été étudié dans ce travail.

  • • Après 16 semaines d’inoculation, aucune ectomycorhize n’a été trouvée. Néanmoins, l’inoculation de P. involutus aux peupliers a provoqué une augmentation des concentrations de sucres solubles et de l’osmolalité conduisant à une amélioration du statut hydrique. La croissance a été diminuée par rapport à des individus non inoculés. La présence d’hydrogels dans l’enracinement a entraîné une augmentation de la biomasse et une teneur supérieure en eau des plants et une diminution de l’osmolalité des tissus des plants. La sécheresse a diminué sensiblement le contenu en eau des racines, des plants ainsi que la fluorescence de la chlorophylle des feuilles, et stimulé la croissance des racines, les concentrations de sucres solubles et l’osmolalité chez les plants. En condition de sécheresse, P. euphratica a présenté une osmorégulation par accumulation d’hydrates de carbone de faible poids moléculaire.

  • • Ces données indiquent que l’ajout d’hydrogels dans les sols peut améliorer la performance des plants. Les raisons de l’amélioration de l’osmorégulation par les champignons et les hydrogels étaient probablement liées à leur influence sur la stimulation de la formation d’hydrates de carbone solubles en conditions de sécheresse.


sécheresse hydrogel champignon mycorhizien peuplier hydrates de carbone 


  1. Arbona V., Iglesias D.J., Jacas J., Primo-Millo E., Talon M., and Gomez-Cadenas A., 2005. Hydrogel sub strate amendment alleviates drought effects on young citrus plants. Plant Soil 270: 73–82.CrossRefGoogle Scholar
  2. Auge R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42.CrossRefGoogle Scholar
  3. Baum C. and Makeschin F., 2000. Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula × tremuloides). J. Plant Nutr. Soil Sci. 163: 491–497.CrossRefGoogle Scholar
  4. Bhardwaj A.K., Shainberg I., Goldstein D., Warrington D.N., and Levy G.J., 2007. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Sci. Soc. Am. J. 71: 406–412.CrossRefGoogle Scholar
  5. Bogeat-Triboulot M., Brosche M., Renaut J., Jouve L., Thiec D.L., Fayyaz P., Vinocur B., Witters E., Laukens K., Teichmann T., Altman A., Hausman J., Polle A., Kangasjärvi J., and Dreyer E., 2007. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 143: 876–892.PubMedCrossRefGoogle Scholar
  6. Bréda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644.CrossRefGoogle Scholar
  7. Bouranis D.L., Theodoropoulos A.G., and Drossopoulos J.B., 1995. Designing synthetic polymers as soil conditioners. Commun. Soil Sci. Plant Anal. 26: 1455–1480.CrossRefGoogle Scholar
  8. Ciais P.H., Reichstein M., Viovy N., Granier A., Allard V. et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533.PubMedCrossRefGoogle Scholar
  9. Dell B., Malajczuk N., Bougher N.L., and Thomson G., 1994. Development and function of Pisolithus and Scleroderma ectomycorrhizas formed in vivo with Allocasuarina, Casuarina and Eucalyptus. Mycorrhiza 5: 129–138.Google Scholar
  10. Gafur A., Schützendübel A., Langenfeld-Heyser R., Fritz E., and Polle A., 2004. Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus × canescens) differ in H2O2 production. Plant Biol. 6: 91–99.PubMedCrossRefGoogle Scholar
  11. Gu R.S., Fonseca S., Puskas L., Hackler L., Zvara A., Dudits D., and Pais M.S., 2004. Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol. 24: 265–276.PubMedGoogle Scholar
  12. Hampp R., and Schaeffer C., 1999. Mycorrhiza carbohydrate and energy metabolism. In: Varma A., Hock B., (Eds.) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer-Verlag, Berlin, pp. 273–303.Google Scholar
  13. Hampp R., Ecke M., Schaeffer C., Wallenda T., Wingler A., Kottke I., Sundberg B., 1996. Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indolacetic acid-biosynthesis genes. Trees (Berl.) 11: 59–64.CrossRefGoogle Scholar
  14. Holliman P.J., Clark J.A., Williamson J.C., and Jones D.L., 2005. Model and field studies of the degradation of cross-linked polyacrylamide gels used during the revegetation of slate waste. Sci. Total Environ. 336: 13–24.PubMedCrossRefGoogle Scholar
  15. Hu L., Lu H., Liu Q., Chen X., and Jiang X., 2005. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol. 25: 1273–1281.PubMedGoogle Scholar
  16. Hukin D., Cochard H., Dreyer E., Le Thiec D., and Bogeat-Triboulot M.A., 2005. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species? J. Exp. Bot. 56: 2003–2010.PubMedCrossRefGoogle Scholar
  17. Hüttermann A., Zommorodi M., and Reise K., 1999. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Till. Res. 50: 295–304.CrossRefGoogle Scholar
  18. IPCC, 2001. Climate Change. Cambridge University Press, Cambridge.Google Scholar
  19. Kitajima M., and Butler W.L., 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothyquinone. Biochim. Biophys. Acta 376: 105–115.PubMedCrossRefGoogle Scholar
  20. Landhausser S.M., Muhsin T.M., and Zwiazek J.J., 2002. The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can. J. Bot. 80: 684–689.CrossRefGoogle Scholar
  21. Langenfeld-Heyser R., Gao J., Ducic T., Tachd Ph., Lu C.F., Fritz E., Gafur A., and Polle A., 2007. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus × canescens. Mycorrhiza 17: 121–131.PubMedCrossRefGoogle Scholar
  22. Luo Z.B., Calfapietra C., Liberloo M., Scarascia-Mugnozza G., and Polle A., 2006. Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N-fertilization. Glob. Change Biol. 12: 272–283.CrossRefGoogle Scholar
  23. Marjanovic Z., Nehls U., and Hampp R., 2005. Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Ann. N. Y. Acad. Sci. 1048: 496–499.PubMedCrossRefGoogle Scholar
  24. Matzner E., Khanna P., Meiwes K., Lindheim M., Prenzel J., and Ulrich B., 1982. Elementflüsse in Waldökosystemen im Solling — Datendokumentation. Göttingen Bodenkundliche Berichte 71: 1–276.Google Scholar
  25. Merchant A., Tausz M., Arndt S.K., and Adams M.A., 2006. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell Environ. 29: 2017–2029.PubMedCrossRefGoogle Scholar
  26. Nehls U., Mikolajewski S., Magel E., and Hampp R., 2001. Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol. 150: 533–541.CrossRefGoogle Scholar
  27. Nehls U., Grunze N., Willmann M., Reich M., and Kuster H., 2007. Sugar for my honey: Carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68: 82–91.PubMedCrossRefGoogle Scholar
  28. Ottow E.A., Teichmann T., Kuhlmann B., Fritz E., Brosche M., Kangasjarvi J., Jiang X., and Polle A., 2005. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol. 139: 1762–1772.PubMedCrossRefGoogle Scholar
  29. Polle A., Altman A., and Jiang X.N., 2006. Towards genetic engineering for drought tolerance in trees. In: Fladung M., Ewald D. (Eds.), Tree Transgenesis: recent developments. Springer Verlag, Berlin, pp. 275–297.Google Scholar
  30. Reddy M.S. and Satyanarayana T., 1998. Ectomycorrhizal formation in micropropagated plantlets of Populus deltoids. Symbiosis 25: 343–348.Google Scholar
  31. Rennenberg H., Loreto L., Polle A., Brilli F., Fares S., Beniwal R.S., and Gessler A., 2006. Physiological responses of forest trees to heat and drought. Plant Biol. 8: 556–571.PubMedCrossRefGoogle Scholar
  32. Rincon A., Priha O., Lelu-Walter M.A., Bonnet M., Sotta B., and Tacon F.L., 2005. Shoot water status and ABA responses of transgenic hybrid larch Larix kaempferi × L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiol. 25: 1101–1108.PubMedGoogle Scholar
  33. Schär C., Vidale P.L., Lüthi D., Frei C., Häberli C., Mark A., Liniger M.A., and Appenzeller C., 2004. The role of increasing temperature variability in European summer heat waves. Nature 427: 332–336.PubMedCrossRefGoogle Scholar
  34. Sixto H., Aranda I., and Grau J.M., 2006. Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence. Photosynthetica 44: 169–173.CrossRefGoogle Scholar
  35. Smith S.E. and Read D.J., 1997. Mycorrhizal symbiosis. Cambridge, UK, Academic Press.Google Scholar
  36. Vierheilig H., Alt M., Mohr U., Boller T., and Wiemken A., 1994. Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J. Plant Physiol. 143: 337–343.Google Scholar
  37. Viero P.W.M. and Little K.M., 2006. A comparison of different planting methods, including hydrogels, and their effect on eucalypt survival and initial growth in South Africa. South. Afr. For. J. 208: 1–9.Google Scholar
  38. Viero P.W.M., Little K.M., and Oscroft D.G., 2000. The effect of a soil-amended hydrogel on the establishment of a Eucalyptus grandis × E. camaldulensis clone grown on the sandy soils of Zululand. South. Afr. For. J. 188: 21–28.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Zhi-Bin Luo
    • 1
    • 2
    Email author
  • Ke Li
    • 3
  • Xiangning Jiang
    • 3
  • Andrea Polle
    • 1
  1. 1.Büsgen-Institut, Abteilung: Forstbotanik und BaumphysiologieGeorg-August UniversitätGöttingenGermany
  2. 2.College of Life SciencesNorthwest A&F UniversityYangling, ShaanxiP.R. China
  3. 3.College of Life Sciences and BiotechnologyBeijing Forestry UniversityBeijingP.R. China

Personalised recommendations