Advertisement

Annals of Forest Science

, Volume 65, Issue 8, pp 808–808 | Cite as

Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments

  • Laurent Augusto
  • Céline Meredieu
  • Didier Bert
  • Pierre Trichet
  • Annabel Porté
  • Alexandre Bosc
  • Frédéric Lagane
  • Denis Loustau
  • Sylvain Pellerin
  • Frédéric Danjon
  • Jacques Ranger
  • Jacques Gelpe
Original Article

Abstract

  • • The objective of this study was to explore the distribution of major nutrients (N, P, K, Ca and Mg) in the aboveground compartments of an intensively managed tree species (Pinus pinaster Ait.). A total of 53 trees were cut down in even-aged stands respectively 8, 16, 26, 32 and 40 years old. The nutrient concentrations of the aboveground compartments were analysed.

  • • Nutrient concentrations of foliage did not vary with any of the variables used, except needle age. Nutrient concentrations of living branches, stem bark, stem sapwood, stem heartwood, stemwood and stem decreased with increasing branch diameter, bark thickness, sapwood thickness and heartwood thickness, respectively. Beyond a certain value of the predictive variable (stem diameter ≈ 15 cm; branch diameter ≈ 2.5 cm), the concentration of all the nutrients stabilised.

  • • A 50 year-old pine stand was used to obtain a validation dataset for nitrogen concentration. For this nutrient, the regression relationships gave satisfactory estimates for most compartments (mean error = 12–25%) and particularly for the stem.

  • • A procedure is proposed to estimate the nutrient exports associated with harvests of Pinus pinaster biomass.

Keywords

nutrient tree dimension export Pinus pinaster 

Établissement d’équations prédisant la concentration en nutriments des compartiments de l’arbre en vue d’une amélioration des modèles d’exportation de nutriments par récolte de biomasse

Résumé

  • • L’objectif de cette étude est d’explorer la distribution des éléments majeurs (N, P, K, Ca, Mg) dans les compartiments aériens d’une essence gérée de manière intensive. Au total, 53 pins maritimes (Pinus pinaster Ait.) ont été abattus parmi des peuplements équiennes de 8, 16, 26, 32 et 40 ans.

  • • Les concentrations en nutriments du feuillage ne varient pas pour une classe d’âge d’aiguilles donnée. Les concentrations des branches vivantes, de l’écorce, de l’aubier et du duramen décroissent lorsque le diamètre ou l’épaisseur du compartiment considéré augmente. La concentration de l’ensemble des nutriments devient constante lorsque la variable prédictive (diamètre ou épaisseur) atteint une valeur plateau.

  • • Un jeu de données de validation pour les concentrations en azote, provenant d’un peuplement équienne de pins de 50 ans, permet de confirmer les performances satisfaisantes des modèles construits (erreur moyenne = 12–25 %) et en particulier pour le tronc.

  • • Une procédure d’estimation des exportations de nutriments associées aux récoltes de biomasse de Pinus pinaster est présentée.

Mots-clés

nutriment dendrométrie de l’arbre exportation Pinus pinaster 

References

  1. André F. and Ponette Q., 2003. Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standard stand in Chimay (Belgium). Ann. For. Sci. 60: 489–502.CrossRefGoogle Scholar
  2. Augusto L. and Bert D., 2005. Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry 78: 451–455.CrossRefGoogle Scholar
  3. Augusto L., Ranger J., Ponette Q., and Rapp M., 2000. Relationships between forest tree species, stand production and stand nutrient amount. Ann. For. Sci. 57: 313–324.CrossRefGoogle Scholar
  4. Bergstrom B., 2003. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 76: 45–53.CrossRefGoogle Scholar
  5. Bert D. and Danjon F., 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manage. 222: 279–295.CrossRefGoogle Scholar
  6. Bravo F., Bravo-Oviedo A., and Diaz-Balteiro L., 2008. Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach. Eur. J. For. Res. 127: 225–234.Google Scholar
  7. Colin-Belgrand M., Ranger J., and Bouchon J., 1996. Internal nutrient translocation in chestnut tree stemwood: III-Dynamics across an age series of Castanea sativa (Miller). Ann. Bot. 78: 729–740.CrossRefGoogle Scholar
  8. Dambrine E., Vega J.A., Taboada T., Rodriguez L., Fernandez C., Macias F., and Gras J.M., 2000. Bilans d’éléments minéraux dans de petits bassins versants forestiers de Galice (NW Espagne). Ann. For. Sci. 57: 23–38.CrossRefGoogle Scholar
  9. Daniel R.C., Lischer P., Theiller G., Fragoso M.A.C., and van Beusichem M.L. (Eds.), 1993. Four new CII reference materials for the chemical analysis of plants: pine needles, oak leaves, barley-straw and applefruit. Optimization of plant nutrition: refereed papers from the Eighth International Colloquium for the Optimization of Plant Nutrition, 31 August–8 September 1992, Lisbon, Portugal, pp. 31–35.Google Scholar
  10. De Walle D.R., Tepp J.S., Swistock B.R., Sharpe W.E., and Edwards P.J., 1999. Tree-ring cation response to experimental watershed acidification in West Virginia and Maine. J. Env. Qual. 28: 299–309.CrossRefGoogle Scholar
  11. Dumery B., 1973. Relation entre la nutrition minérale et la croissance du Pin maritime dans les principaux sites des Landes de Gascogne. Ph.D. thesis, Univ. Bordeaux, 175 p.Google Scholar
  12. Fernandez-Prida C., 1977. Mineral composition of Pinus pinaster wood. Investigacion-y-Tecnica-del-Papel 14: 633–642.Google Scholar
  13. Ferretti M., Udisti R., and Barbolani E., 1993. Mineral nutrients and trace metals in tree rings of Pinus sp. J. Anal. Chem. 347: 467–470.Google Scholar
  14. Finer L. and Kaunisto S., 2000. Variation in stemwood nutrient concentrations in Scots pine growing on peatland. Scand. J. For. Res. 15: 424–432.CrossRefGoogle Scholar
  15. Gordon W.E. and Jackson R.B., 2000. Nutrient concentrations in fine roots. Ecology 81: 275–280.CrossRefGoogle Scholar
  16. Heilman P.E. and Gessel S.P., 1963. The effect of nitrogen fertilization on the concentration and weight of nitrogen, phosphorus, and potassium in Douglas fir trees. Soil. Sci. Soc. Am. Proc. 27: 102–105.CrossRefGoogle Scholar
  17. Houle D., Duchesne L., Moore J.D., Laflèche M.R., and Ouimet R., 2002. Soil and tree-ring chemistry response to liming in a sugar maple stand. J. Env. Qual. 31: 1993–2000.CrossRefGoogle Scholar
  18. Ilomaki S., Nikinmaa E., and Makela A., 2003. Crown rise due to competition drives biomass allocation in silver birch. Can. J. For. Res. 33: 2395–2404.CrossRefGoogle Scholar
  19. Johnson C.E., Johnson A.H., and Siccama T.G., 1991. Whole-tree clearcutting effects on exchangeable cations and soil acidity. Soil Sci. Soc. Am. J. 55: 502–508.CrossRefGoogle Scholar
  20. Keay J. and Turton A.G., 1970. Distribution of biomass and major nutrients in a Marine Pine plantation. Aust. For. 34: 39–48.Google Scholar
  21. Keay J., Turton A.G., and Campbell N.A., 1968. Some effects of nitrogen and phosphorus fertilization of Pinus pinaster in Western Australia. For. Sci. 14: 408–417.Google Scholar
  22. Lemoine B., 1991. Growth and yield of maritime pine (Pinus pinaster Ait.): the average dominant tree of the stand. Ann. For. Sci. 48: 593–611.CrossRefGoogle Scholar
  23. Lemoine B., Ranger J., and Gelpe J., 1988. Distributions qualitative et quantitative des éléments nutritifs dans un jeune peuplement de pin maritime (Pinus pinaster). Ann. Sci. For. 45: 95–116.CrossRefGoogle Scholar
  24. Lopez-Serrano F.R., de las Heras J., Gonzalez-Ochoa A.I., and Garcia-Morote F.A., 2005. Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halenpensis forest stands. For. Ecol. Manage. 210: 321–336.CrossRefGoogle Scholar
  25. Meerts P., 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann. For. Sci. 59: 713–722.CrossRefGoogle Scholar
  26. Merino A., Balboa M., Rodriguez-Soalleiro R., and Alvarez Gonzalez J.G., 2005. Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For. Ecol. Manage. 207: 325–339.CrossRefGoogle Scholar
  27. Monge C., 1970. Variations de la teneur en composés azotés des organes végétatifs du Pin maritime. Ph.D. thesis, Univ. Bordeaux, 45 p.Google Scholar
  28. Montero G., Ortega C., Cañellas I., and Bachiller A., 1999. Productividad aérea y dynamica de nutrientes en una repoblacion de Pinus pinaster Ait. Sometida a distintos regimenes de claras. Investig. Agrar. Sist. Recur. For., Special issue 1: 175–206.Google Scholar
  29. Nilsson L.O. and Wiklund K., 1995. Nutrient balance and P, K, Ca, Mg, S and B accumulation in a Norway spruce stand following ammonium sulphate application, fertilization, irrigation, drought and N-free fertilisation. Plant Soil 168–169: 437–446.CrossRefGoogle Scholar
  30. Nunez-Regueira L., Rodriguez-Anon J.A., Proupin J., Mourinon B., and Artiaga-Diaz R., 2005. Energic study of residual forest biomass using calorimetry and thermal analysis. J. Therm. Anal. Cal. 80: 457–464.CrossRefGoogle Scholar
  31. Penninckx V., Glineur S., Gruber W., and Herbauts J., 2001. Radial variations in wood mineral element concentrations: a comparison of beech and pedunculate oak from the Belgian Ardennes. Ann. For. Sci. 58: 253–260.CrossRefGoogle Scholar
  32. Porté A., Bosc A., Champion I., and Loustau D., 2000. Estimating the foliage area of maritime pine (Pinus pinaster Ait.) branches and crowns with application to modelling the foliage area distribution in the crown. Ann. For. Sci. 57: 73–86.CrossRefGoogle Scholar
  33. Porté A., Trichet P., Bert D., and Loustau D., 2002. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 158: 71–83.CrossRefGoogle Scholar
  34. Ranger J., Allié S., Gelhaye D., Pollier B., Turpault M.P., and Granier A., 2002. Nutrient budgets for a rotation of a Douglas-fir plantation in the Beaujolais (France) based on a chronosequence study. For. Ecol. Manage. 171: 3–16.CrossRefGoogle Scholar
  35. Rochon P., Pare D., and Messier C., 1998. Development of an improved model estimating the nutrient content of the bole for four boreal tree species. Can. J. For. Res. 28: 37–43.CrossRefGoogle Scholar
  36. Rodriguez-Soalleiro R., Balboa-Murias M., Alvarez-Gonzalez J.G., and Merino-Garcia A., 2007. Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations. Ann. For. Sci. 64: 375–384.CrossRefGoogle Scholar
  37. Rytter L., 2002. Nutrient content in stems of hybrid aspen as affected by tree age and tree size, and nutrient removal with harvest. Biomass Bioenergy 23: 13–25.CrossRefGoogle Scholar
  38. Saint-André L., Laclau J.P., Deleporte P., Ranger J., Gouma R., Saya A., and Joffre R., 2002. A generic model to describe the dynamics of nutrient concentrations within stemwood across an age series of a Eucalyptus hybrid. Ann. Bot. 90: 65–76.PubMedCrossRefGoogle Scholar
  39. Seillac P., 1962. L’application du diagnostic foliaire à la sylviculture landaise. C.R. Acad. Agric. Fr. 48: 322–327.Google Scholar
  40. Smith K.T. and Shortle W.C., 2001. Conservation of element concentration in xylem sap of red spruce. Trees 15: 148–153.CrossRefGoogle Scholar
  41. Thompson T.D., Morris L.A., Lee A.H., and Wells C.G., 1986. Estimates of nutrient removal, displacement and loss resulting from harvest and site preparation of a Pinus taeda plantation in the Piedmont of North Carolina. For. Ecol. Manage. 15: 257–267.CrossRefGoogle Scholar
  42. Warren C.R., 2005. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees 20: 157–164.CrossRefGoogle Scholar
  43. Warren C.R. and Adams M.A., 2001. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 24: 597–609.CrossRefGoogle Scholar
  44. Watmough S.A., Hutchinson T.C., and Sager E.P.S., 1999. The impact of simulated acid rain on soil leachate and xylem chemistry in a Jack pine (Pinus banksiana Lamb.) stand in northern Ontario, Canada. Water Air Soil Pollut. 111: 89–108.CrossRefGoogle Scholar
  45. Wyttenbach A. and Tobler L., 1988. The seasonal variation of 20 elements in 1st and 2nd year needles of Norway spruce, Picea abies (L.) Karst. Trees 2: 52–64.CrossRefGoogle Scholar
  46. Young H.E. and Guinn V.P., 1966. Chemical elements in complete mature trees of seven species in Maine. TAPPI J. 49: 190–197.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Laurent Augusto
    • 1
  • Céline Meredieu
    • 2
    • 3
  • Didier Bert
    • 3
  • Pierre Trichet
    • 2
  • Annabel Porté
    • 2
    • 3
  • Alexandre Bosc
    • 2
  • Frédéric Lagane
    • 2
    • 3
  • Denis Loustau
    • 2
  • Sylvain Pellerin
    • 1
  • Frédéric Danjon
    • 2
    • 3
  • Jacques Ranger
    • 4
  • Jacques Gelpe
    • 2
  1. 1.UMR1220 TCEMINRAVillenave d’Ornon CedexFrance
  2. 2.UR1263 EPHYSEINRACestas CedexFrance
  3. 3.UMR1202 BIOGECOINRACestas CedexFrance
  4. 4.UR1138 BEFINRAChampenoux CedexFrance

Personalised recommendations