Annals of Forest Science

, Volume 65, Issue 7, pp 705–705 | Cite as

Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population

  • Tomas Funda
  • Charles C. Chen
  • Cherdsak Liewlaksaneeyanawin
  • Ahmed M. A. Kenawy
  • Yousry A. El-KassabyEmail author
Original Article


  • •The mating pattern and gene flow in a western larch (Larix occidentalis Nutt.) experimental population was studied with the aid of microsatellite markers and a combination of paternity-mating system analysis. The commonly difficult to assess, male gametic contribution was determined with 95% confidence and its impact on genetic gain and diversity was determined.

  • • Male fertility success rate ranged between 0 and 11%. Male reproductive output parental imbalance was observed with 50% of the pollen being produced by the top 5% of males while the lower 39% males only produced 10% of the pollen.

  • • A significant difference was observed between male effective population size (genetic diversity) estimates from paternity assignment compared to those based on population’s census number (21 vs. 41); however, this difference did not affect estimates of genetic gain.

  • • A total of 221 full-fib families were identified (sample size range: 1–8) and were nested among the studied 14 seed-donors.

  • • A combination of paternity-mating system analysis is recommended to provide a better insight into seed orchards’ mating dynamics. While pollen flow tends to inflate mating system’s outcrossing rate, the paternity analysis effectively determined the rate and magnitude of contamination across receptive females.


western larch Larix occidentalis seed orchards mating system paternity analysis SSR gene flow 

Analyse de paternité et du mode de croisement dans une population expérimentale de mélèze occidental (Larix occidentalis Nutt.)


  • • Les modes de croisement et les flux de gènes dans une population expérimentale de mélèze occidental (Larix occidentalis Nutt.) ont été étudiés à l’aide de marqueurs microsatellites et d’une analyse combinée de paternité et du système de reproduction. La contribution gamétique mâle — communément difficile à estimer — a été déterminée avec un seuil de confiance de 95 % et son impact sur le gain génétique et la diversité a été déterminé.

  • • Le taux de succès reproductif mâle était compris entre 0 et 11 %. Un déséquilibre dans la contribution des parents mâles a été observé avec la production de 50 % du pollen par 5 % des pères alors que 39 % d’entre eux ne contribuaient que pour seulement 10 % du pollen.

  • • Une différence significative a été observée entre la taille efficace de la population mâle (diversité génétique) estimée par la recherche de paternité et celle basée sur les effectifs recensés de la population (21 vs. 41) ; cependant, cette différence n’affecte pas l’estimation du gain génétique.

  • • 221 familles de plein-frères ont été identifiées (effectifs entre 1 et 8), regroupées parmi les 14 arbres-mères étudiés.

  • • La combinaison d’une analyse de paternité et du système de reproduction est recommandée pour étudier de manière approfondie la dynamique de croisement en vergers à graines. Tandis que les flux de pollen tendent à augmenter le taux d’inter-croisements, l’analyse de paternité détermine de manière effective le taux et l’amplitude de contamination des arbres-mères.


mélèze occidental Larix occidentalis verger à graines système de croisement analyse de paternité microsatellite flux de gènes 


  1. Adams W.T. and Birkes D.S., 1989. Mating patterns in seed orchards. In: Proceeding of 20th Southern Forest Tree Improvement Conference, Charleston, South Carolina, pp. 75–86.Google Scholar
  2. Bell G.D. and Fletcher A.M., 1978. Computer organized orchard layouts (COOL) based on the permutated neighbourhood design concept. Silvae Genet. 27: 223–225.Google Scholar
  3. Brown A.H.D., 1988. Genetic characterization of plant mating system. In: Brown A.H.D., Clegg M.T., Kahler A.L., Weir B.S. (Eds.), Plant population genetics, breeding, and genetic resources. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 145–162.Google Scholar
  4. Callen D.F., Thompson A.D., Shen Y., Phillips H.A., Richards R.I., Mulley J.C., and Sutherland G.R., 1993. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 52: 922–927.PubMedGoogle Scholar
  5. Chakraborty R., Andrade M.D., Daiger S.P., and Budowle B., 1992. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann. Hum. Genet. 56: 45–57.PubMedCrossRefGoogle Scholar
  6. Chen C.C., Liewlaksaneeyanawin C., Funda T., Kenawy A.M.A., Newton C.H., and El-Kassaby Y.A., 2008. Development and characterization of microsatellite loci in western larch (Larix occidentalis Nutt.). Mol. Ecol. Res. (in press).Google Scholar
  7. Cloutier S., Cappadocia M., and Landry B.S., 1997. Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor. Appl. Genet. 95: 83–91.CrossRefGoogle Scholar
  8. Devlin B. and Ellstrand N.C., 1990. The development and application of a refined method for estimating gene flow from angiosperm paternity analysis. Evolution 44: 248–259.CrossRefGoogle Scholar
  9. Dow B.D. and Ashley M.V., 1998. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J. Hered. 89: 62–70.CrossRefGoogle Scholar
  10. Doyle J.J. and Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  11. El-Kassaby Y.A. and Jaquish B., 1996. Population density and mating pattern in western larch. J. Hered. 87: 438–443.Google Scholar
  12. El-Kassaby Y.A. and Ritland K., 1986. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genet. 35: 240–244.Google Scholar
  13. Faulkner R., 1975. Seed orchards. Forestry Commission. Bulletin No. 54, 149 p.Google Scholar
  14. Fins L. and Seeb L.W., 1986. Genetic variation in allozymes of western larch. Can. J. For. Res. 16: 1013–1018.CrossRefGoogle Scholar
  15. Fisher P.J., Richardson T.E., and Gardner R.C., 1998. Characteristics of single- and multi-copy microsatellites from Pinus radiata. Theor. Appl. Genet. 96: 969–979.CrossRefGoogle Scholar
  16. Forest Genetics Council of BC, 2008. Business plan. Woods J.H. (compiler and Ed.), ISSN 1498-1378.Google Scholar
  17. Greenwood M.S., 1986. Gene exchange in loblolly pine: the relation between pollination mechanism, female receptivity and pollen availability. Am. J. Bot. 73: 1443–1451.CrossRefGoogle Scholar
  18. Jaquish B. and El-Kassaby Y.A., 1998. Genetic variation of western larch in British Columbia and its conservation. J. Hered. 89: 248–253.CrossRefGoogle Scholar
  19. Jaquish B., Howe G.T., Fins L., and Rust M., 1995. Western larch tree improvement programs in the inland empire and British Columbia. In: Schmidt W.C., McDonald K.J. (Eds.), Ecology and management of Larix forests: a look ahead. USDA Forest Service, Intermountain Research Satation Technical Report,GTR-INT 319.Google Scholar
  20. Jones A.G. and Ardren W.R., 2003. Methods of parentage analysis in natural populations. Mol. Ecol. 12: 2511–2523.PubMedCrossRefGoogle Scholar
  21. Kalinowski S.T., Taper M.L., and Marshall T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099–1106.PubMedCrossRefGoogle Scholar
  22. Kang K.-S., 2000. Clonal and annual variation of flower production and composition of gamete gene pool in a clonal seed orchard of Pinus densiflora. Can. J. For. Res. 30: 1275–1280.CrossRefGoogle Scholar
  23. Kang K.-S. and Lindgren D., 1998. Fertility variation and its effects on the relatedness of seeds in Pinus densiflora, Pinus thunbergii and Pinus koraiensis clonal seed orchards. Silvae Genet. 47: 196–201.Google Scholar
  24. Khasa P.D., Newton C.H., Rahman M.H., Jaquish B., and Dancik B.P., 2000. Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43: 439–448.PubMedCrossRefGoogle Scholar
  25. Levin D.A. and Kerster H.W., 1969. The dependence of bee-mediated pollen and gene dispersal upon plant diversity. Evolution 23: 560–571.CrossRefGoogle Scholar
  26. Liewlaksaneeyanawin C., Ritland C.E., and El-Kassaby Y.A., 2002. Inheritance of null alleles for microsatellites in the white pine weevil (Pissodes strobi (Peck), (Coleoptera: Curculionidae)). J. Hered. 93: 67–70.PubMedCrossRefGoogle Scholar
  27. Linhart Y.B., Busby W.H., Beach J.H., and Feinsinger P., 1987. Forager behavior, pollen dispersal and inbreeding in two species of hummingbird-pollinated plants. Evolution 41: 679–682.CrossRefGoogle Scholar
  28. Mariette S., Balsemin E., Stoeckel S., Tavaud M., Le Boler H., Santi F., and Verger M., 2007. Parental participation in progeny and effective population sizes in experimental seed orchards of wild cherry Prunus avium L. (Batsch). Ann. For. Sci. 64: 533–539.CrossRefGoogle Scholar
  29. Marshall T.C., Slate J., Kruuk L.E.B., and Pemberton J.M., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639–655.PubMedCrossRefGoogle Scholar
  30. Moriguchi Y., Iwata H., Ihara T., Yoshimura K., Taira H., and Tsumura Y., 2003. Development and characterization of microsatellite markers for Cryptomeria japonica D. Don. Theor. Appl. Genet. 106: 751–758.Google Scholar
  31. Moriguchi Y., Taira H., Tani N., and Tsumura Y., 2004. Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can. J. For. Res. 34: 1683–1690.CrossRefGoogle Scholar
  32. Oddou-Muratorio S., Houot M.-L., Demesure-Musch B., and Austerlitz F., Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. I. Evaluating the paternity analysis procedure in continuous populations. Mol. Ecol. 12: 3427–3439.Google Scholar
  33. Pemberton J.M., Slate J., Bancroft D.R., and Barrett J.A., 1995. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol. Ecol. 4: 1670–1677.CrossRefGoogle Scholar
  34. Ritland K., 2002. Extensions of models for the estimation of mating system using n indpendent loci. Heredity 88: 221–228.PubMedCrossRefGoogle Scholar
  35. Schmidt W.C., 1995. Around the world with Larix: an introduction. In: Schmidt W.C., McDonald K.J. (Eds.), Ecology and management of Larix forests: a look ahead. USDA Forest Service, Intermountain Research Satation Technical Report, GTR-INT 319.Google Scholar
  36. Schmidt W.C. and McDonald K.J., 1995. Ecology and management of Larix forests: a look ahead. USDA Forest Service, Intermountain Research Station General Technical Report, GTR-INT-319.Google Scholar
  37. Schmidt W.C. and Shearer R.C., 1995. Larix occidentalis: a pioneer of the North American west. In: Schmidt W.C. and McDonald K.J. (Eds.), Ecology and management of Larix forests: a look ahead. USDA Forest Service, Intermountain Research Satation Technical Report, GTR-INT 319.Google Scholar
  38. Schmidt W.C., Shearer R.C., and Roe A.L., 1976. Ecology and silviculture of western larch forests. USDA Forest Service, Washington, DC, USA.Google Scholar
  39. Semerikov V.L. and Lascoux M., 1999. Genetic relationships among Eurasian and American Larix species based on allozymes. Heredity 83: 62–70.PubMedCrossRefGoogle Scholar
  40. Semerikov V.L. and Matveev A.V., 1995. Investigation of genetic variation of isozyme loci in Siberian larch, Larix sibirica Ldb. Russ. J. Genet. 31: 944–949.Google Scholar
  41. Semerikov V.L., Semerikov L.F., and Lascoux M., 1999. Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity 82: 193–204.CrossRefGoogle Scholar
  42. Slavov G.T., Howe G.T., and Adams W.T., 2005. Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can. J. For. Res. 35: 1592–1603.CrossRefGoogle Scholar
  43. Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L., Mitchell S.E., Kresovich S., and Ziegle J., 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor. Appl. Genet. 95: 163–173.CrossRefGoogle Scholar
  44. Sokal R.R. and Rohlf F.J., 1981. Biometry. 2nd ed. W.H. Freeman and Co., New York.Google Scholar
  45. Stoehr M., Webber J., and Woods J., 2004. Protocol for rating seed or- chard seedlots in British Columbia: quantifying genetic gain and diversity. Forestry 77: 297–303.CrossRefGoogle Scholar
  46. Tani N., Takahashi T., Ujino-Ihara T., Iwata H., Yoshimura K., and Tusumura Y., 2004. Development and characteristics of microsatellite markers for sugi (Cryptomeria japonica D. Don) derived from microsatellite-enriched libraries. Ann. For. Sci. 61: 569–575.CrossRefGoogle Scholar
  47. Vandeputte S., Mauger S., and Dupont-Nivet M., 2006. An evaluation of allowing for mismatches as a way to manage genotyping errors in parentage assignment by exclusion. Mol. Ecol. Notes 6: 265–267.CrossRefGoogle Scholar
  48. Vendramin G.G. and Hansen O.K., 2005. Molecular markers for characterizing diversity in forest trees. In: Geburek T., Turok, J. (Eds.). Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen, Slovakia, pp. 337–368.Google Scholar
  49. Wheeler N.C., Adams W.T., and Hamrick J.L., 1992. Pollen distribution in wind-pollinated seed orchards. In: Bramlett D.L., Askew G.R., Blush T.D., Bridgwater F.E., Jett J.B. (Eds.), Pollen Management Handbook. USDA Forest Service Agriculture Bulletin.Google Scholar
  50. Yazdani R., Scotti I., Jansson G., Plomion C., and Mathur G., 2003. Inheritance and diversity of simple sequence repeat (SSR) microsatellite markers in various families of Picea abies. Hereditas 138: 219–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Tomas Funda
    • 1
  • Charles C. Chen
    • 1
  • Cherdsak Liewlaksaneeyanawin
    • 1
  • Ahmed M. A. Kenawy
    • 1
  • Yousry A. El-Kassaby
    • 1
    Email author
  1. 1.Department of Forest SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations