Advertisement

Annals of Forest Science

, Volume 65, Issue 6, pp 602–602 | Cite as

Effects of site on fibre, kraft pulp and handsheet properties of Eucalyptus globulus

  • Rupert WimmerEmail author
  • Geoffrey Downes
  • Robert Evans
  • Jim French
Original Article

Abstract

  • • Eight-year old trees from two Eucalyptus globulus Labill. clones planted across three different sites in Tasmania, Australia, were sampled for wood and kraft pulp/handsheet properties.

  • • Site had a significant effect on all measured properties. Compared with the poor site (Parkham) the wood from the good site (West Ridgley) had on average 11 % lower wood density. The poor site had also greater microfibril angles, shorter fibres at lower pulp yields.

  • • The handsheets produced with pulp from the poor site resulted in comparatively higher bulkiness, lower burst, lower tear and tensile indices, lower zero span tensile strength, but higher opacity, higher light scattering and higher surface roughness. Significant height effects were found with all wood properties, and also with tear index, zero span tensile strength and opacity.

  • • Discriminant analysis showed that for 76 out of 100 handsheets the raw material source, i.e. growth site, could be predicted correctly using a set of handsheet properties with tear index and bulk index being most prominent.

  • • This is unique evidence that site conditions are strongly reflected in handsheet properties produced from Eucalyptus pulp.

eucalypt wood quality fibre length pulp paper 

Effet du site sur les propriétés des fibres, de la pâte et des feuilles d’essai d’Eucalyptus globulus

Résumé

  • • Nous avons échantillonné des arbres de huit ans de deux clones d’Eucalyptus globulus Labill., sur trois sites différents de Tasmanie en Australie, pour analyser les propriétés du bois et les propriétés papetières.

  • • Le site a un effet significatif sur toutes les propriétés. Sur le meilleur site (West Ridgley), le bois a une densité inférieure de 11 % à celle obtenue sur le site le plus pauvre. Ce dernier (Parkham) présente un angle des microfibrilles plus important, des fibres plus courtes et un rendement en pâte plus faible.

  • • Les feuilles fabriquées avec de la pâte du site pauvre conduisent à une main plus importante, un éclatement, une déchirure et des indices de traction moindres, une résistance à la traction à la mâchoire jointive plus faible, mais une opacité plus forte, une diffusion à la lumière et une rugosité de surface plus importantes.

  • • Des effets significatifs de la hauteur ont été mis en évidence pour toutes les propriétés du bois mais aussi pour l’index de déchirement, pour la résistance à la traction à la mâchoire jointive et pour l’opacité. L’analyse discriminante a montré que pour 76 feuilles sur 100, l’origine de la matière première, c’est-à-dire le site de production, pouvait être prédite correctement en utilisant un jeu de propriétés des feuilles, l’indice de déchirement et la main étant les plus évidents.

  • • Cela montre de manière originale que les conditions stationnelles sont reflétées dans les propriétés de feuilles de papiers produites avec de la pâte mécanique.

Eucalyptus qualité du bois longueur des fibres angle des microfibrilles pâte kraft papier 

References

  1. Battaglia M. and Sands P., 1997. Modelling site productivity of Eucalyptus globulus in response to climatic and site factors. Aust. J. Plant Physiol. 24: 831–850.CrossRefGoogle Scholar
  2. Beadle C.L., Turnbull C.R., and Dean G.H., 1996. Environmental effects on growth and kraft pulp yield of Eucalyptus globulus and E. nitens. Appita J. 49: 239–242.Google Scholar
  3. Borralho N.M.G., Cotterill P.P., and Kanowski P.J., 1992. Genetic parameters and gains expected from selection for dry weight Eucalyptus globulus ssp. in Portugal. For. Sci. 38: 80–94.Google Scholar
  4. Borralho N.M.G., Cotterill P.P., and Kanowski P.J., 1993. Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can. J. For. Res. 23: 648–656.CrossRefGoogle Scholar
  5. Cöpür Y., Makkonen H., and Amidon T.E., 2005. The prediction of pulp yield using selected fiber properties. Holzforschung 59: 477–480.CrossRefGoogle Scholar
  6. Cremer K.W. (Ed.), 1990. Tree in rural Australia. Inkata Press, Melbourne, Sydney.Google Scholar
  7. Downes G.M. and Drew D., 2007. Climatic and genotypic influences on growth, wood formation and utilisation. IUFRO Group 2.08.03 “Improvement and Culture of Eucalypts”, Durban, South Africa 22–26 October, 2007.Google Scholar
  8. Downes G.M., Hudson I.L., Raymond C.A., Dean G.H., Michell A.J., Schimleck L.R., Evans R., and Muneri A., 1997. Sampling plantation eucalypts for wood and fibre properties. CSIRO Publishing, Collingwood, Australia, 144 p.Google Scholar
  9. Downes G.M., Worledge D., Schimleck L., Harwood C., French J., and Beadle C., 2006. The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens. N.Z. For. J. 57: 13–22.Google Scholar
  10. Evans R., 1994. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48: 68–172.Google Scholar
  11. Evans R., Downes G.M., Menz D., and Stringer S., 1995. Rapid measurement of variation in tracheid transverse dimensions in a radiata pine. Appita J. 48: 134–138.Google Scholar
  12. Evans R., Stuart S.-A., and Van der Touw J., 1996. Microfibril angle scanning of increment cores by X-ray diffractometry. Appita J. 49: 411–414.Google Scholar
  13. Fardim P. and Duran N., 2005. Influences of surface chemical composition on the mechanical properties of pulp as investigated by SEM, XPS and multivariate data analysis. J. Braz. Chem. Soc. 16: 163–170.CrossRefGoogle Scholar
  14. Hamilton M.G., Greaves B.L., Potts B.M., and Dutkowski G.W., 2007. Patterns of longitudinal within-tree variation in pulpwood and solid-wood traits differ among Eucalyptus globulus genotypes. Ann. For. Res. 64: 831–837.Google Scholar
  15. Henson M. and Vanclay J.K., 2004. The value of good sites and good genotypes : an analysis of Eucalyptus dunnii plantations in NSW. In: The Economics and management of high productivity plantations. IUFRO Conference, Lugo, Spain, 27–30 September 2004.Google Scholar
  16. Hingston F.J. and Galbraith J.H., 1998. Application of the process-based model BIOMASS to Eucalyptus globulus ssp. globulus plantations on ex-farmland in south western Australia, II. Stemwood production and seasonal growth. For. Ecol. Manage. 106: 157–168.CrossRefGoogle Scholar
  17. Jorge F., Quilho T., and Pereira H., 2000. Variability of fibre length in wood and bark in Eucalyptus globulus. IAWA J. 21: 41–48.Google Scholar
  18. Kibblewhite R.P. and Riddell M.J.C., 2000. Wood and kraft fibre property variation within and among nine trees of Eucalyptus nitens. Appita J. 53: 237–244.Google Scholar
  19. Leal S., Pereira H., Grabner M., and Wimmer R., 2003. Clonal and site variation of vessels in 7-year-old Eucalyptus globulus. IAWA J. 24: 185–195.Google Scholar
  20. Little K., van Staden J., and Clarke G.P.Y., 2003. The relationship between vegetation management and the wood and pulping properties of a Eucalyptus hybrid clone. Ann. For. Sci. 60: 673–680.CrossRefGoogle Scholar
  21. Megown K.A., Turner P., Male J.R., and Retief R.J., 2000. The impact of site index and age on the wood, pulp and pulping properties of Eucalyptus grandis. Conference “Forest Genetics for the next Millenium”, Durban, South Africa, 8–13 October 2000, 16 p.Google Scholar
  22. Miranda I. and Pereira H., 2001. Influence of provenance, subspecies, and site on wood density in Eucalyptus globulus Labill. Wood Fiber Sci. 33: 9–15.Google Scholar
  23. Miranda I. and Pereira H., 2002. Variation of pulpwood quality with provenance and site in Eucalyptus globulus. Ann. For. Sci. 59: 283–291.CrossRefGoogle Scholar
  24. Muneri A. and Balodis V., 1997. Determining fibre coarseness of small wood samples from Acacia mearnsii and Eucalyptus grandis by Kajaani FS 200 fibre analyzer. Appita J. 50: 405–408.Google Scholar
  25. Pereira H., Almeida M.H., Tome M., and Pereira J.S., 1995. Eucalyptus globulus plantations: genetic, silvicultural and environmental control of fibre yield and quality. In: Potts B.M., Borralho N.M.G., Reid J.B., Cromer R.N., Tibbits W.N., and Raymond C.A. (Eds.), Proceedings CRCTHF-IUFRO conference: eucalypt plantations: improving fibre yield and quality, 19–24 Feb. 1995, Hobart, Tasmania., CRC for Temperate Hardwood Forestry: Hobart, Tasmania, pp. 46–48.Google Scholar
  26. Phillips F.H., 1988. Pulpwood requirements for the pulp and paper industry. Aust. For. 51: 106–111.Google Scholar
  27. Raymond C.A., Banham P., and MacDonald A.C., 1998. Within tree variation and genetic control of basic density, fibre length and coarseness in Eucalyptus regnans in Tasmania. Appita J. 51: 299–305.Google Scholar
  28. Raymond C.A., Schimleck L.R., Muneri A., and Michell A.J., 2001. Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Sci. Technol. 35: 203–215.CrossRefGoogle Scholar
  29. Sands P.J., Rawlins W., and Battaglia M., 1999. Use of simple plantation productivity model to study the profitability of irrigated Eucalyptus globulus. Ecol. Model. 117: 125–141.CrossRefGoogle Scholar
  30. Santiago A.S. and Neto C.P., 2007. Assessment of potential approaches to improve Eucalyptus globulus kraft pulping yield. J. Chem. Techn. Biotech. 82: 424–430.CrossRefGoogle Scholar
  31. Schimleck L.R., Downes G.M., and Evans R., 2006. Estimation of Eucalyptus nitens wood properties by near infrared spectroscopy. Appita J. 59: 136–141.Google Scholar
  32. Turner C.H., Balodis V., and Dean G.H., 1983. Variability in pulping quality of E. globulus from Tasmanian provenances. Appita J. 36: 371–376.Google Scholar
  33. Vermaas H.F., 2000. Primary processing of eucalypts and factors affecting it. S. Afr. For. J. 187: 37–44.Google Scholar
  34. Williams M.D., Beadle C.L., Turnbull C.R.A., Dean G.H., and French J., 1995. Papermaking potential of plantation eucalypts. In: Potts B.M., Borralho N.M.G., Reid J.B., Cromer R.N., Tibbits W.N., and Raymond C.A. (Eds.), Proceedings CRCTHF-IUFRO Conference: eucalypt plantations: improving fibre yield and quality, 19–24 Feb. 1995, Hobart, Tasmania, CRC for Temperate Hardwood Forestry: Hobart, Tasmania, pp. 73–78.Google Scholar
  35. Wimmer R., Downes G.M., Evans R., Rasmussen G., and French J., 2002. Direct effects of wood characteristics on pulp and handsheet properties of Eucalyptus gobulus. Holzforschung 56: 244–252.CrossRefGoogle Scholar
  36. Zhang S.Y., Yu Q., Chauret G., and Koubaa A., 2003. Selection for both growth and wood properties in hybrid poplar clones. For. Sci. 49: 1–8.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Rupert Wimmer
    • 1
    Email author
  • Geoffrey Downes
    • 2
  • Robert Evans
    • 3
  • Jim French
    • 4
  1. 1.Department of Material Sciences and Process EngineeringUniversität für Bodenkultur WienViennaAustria
  2. 2.CSIRO Sustainable EcosystemsHobartAustralia
  3. 3.CSIRO Materials Science and EngineeringClaytonAustralia
  4. 4.Gunns Fibre TechnologyRidgleyAustralia

Personalised recommendations