Advertisement

Annals of Forest Science

, Volume 65, Issue 6, pp 610–610 | Cite as

The effect of brown-rot decay on water adsorption and chemical composition of Scots pine heartwood

  • Outi Karppanen
  • Martti VenäläinenEmail author
  • Anni M. Harju
  • Tapio Laakso
Original Article

Abstract

  • • The effect of brown-rot (Coniophora puteana) decay on the water adsorption capacity and concentration of extractives of Scots pine (Pinus sylvestris L.) heartwood were studied by comparing corresponding properties of decayed and undecayed wood samples.

  • • The samples derived from 39 felled trees having a large between-tree variation in the extractive concentrations, and subsequently in the mass loss in the decay test. The water adsorption capacity, expressed as equilibrium moisture content (EMC), was measured at a high relative humidity (RH ∼100%, 21 °C).

  • • In contrast to the widely held belief, the water adsorption capacity of brow-rotted heartwood appeared to be significantly higher than that of undecayed heartwood.

  • • The chemical composition of heartwood was changed radically by the fungus: the concentration of stilbenes, resin acids and free fatty acids decreased, while the concentration of soluble sugars increased as a result of decay. In addition, fungal sugars were found in the decayed samples. The concentration of total phenolics increased, which obviously reflected chemical changes in cell wall constituents other than extractives.

  • • As a conclusion, the information concerning the hygroscopicity of brown-rotted wood might be valuable e.g. when carrying out repairs on buildings damaged by advanced decay.

brown-rot decay extractives Scots pine heartwood mass loss moisture content 

Effet des pourritures brunes sur l’adsorption de l’eau et la composition chimique du bois de Coeur du pin sylvestre

Résumé

  • • Nous avons étudié l’effet de la présence de pourriture brune (Coniophora puteana) sur la capacité d’adsorption de l’eau et sur la concentration d’extractibles du bois de cœur du pin sylvestre (Pinus sylvestris L.) en comparant des échantillons contaminés et sains obtenus pour 39 arbres échantillonnés.

  • • Dans les essais de décomposition, on obtient une grande variation entre arbres de la concentration en extractibles et de la perte de masse. La capacité d’adsorption de l’eau, exprimée comme l’humidité d’équilibre, a été mesurée à une humidité relative de 100 % à 21 °C.

  • • Contrairement à ce qui était attendu, la décomposition augmente la capacité d’adsorption de l’eau du bois de cœur en atmosphère très humide. La différence entre arbres des variations de l’humidité d’équilibre (décomposé-contrôle) augmente significativement avec l’augmentation de la perte de masse.

  • • La composition chimique du bois de cœur est radicalement modifiée par le champignon : la concentration de stilbènes, de résines acides et d’acides gras libres décroît tandis que la concentration de sucres solubles augmente, cela résultant de la décomposition. La concentration de composés phénoliques totaux, mesurée par le test de décomposition de Folin-Ciocalteu, augmente. De plus des sucres fongiques dérivant des hyphes de C. puteana ont été retrouvés dans les échantillons décomposés.

  • • En conclusion, les informations concernant l’hygroscopicité du bois brun pourraient être utiles par exemple au moment de procéder à la réparation de bâtiments endommagés par une dégradation avancée.

pourriture brune extractibles perte de masse teneur en eau humidité relative 

References

  1. Anagnost S.E. and Smith W.B., 1997. Hygroscopicity of decayed wood: implications for weight determinations. Wood Fiber Sci. 29: 299–305.Google Scholar
  2. Brunauer S., Emmett P.H., and Teller E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60: 309–319.CrossRefGoogle Scholar
  3. Celimene C.C., Micales J.A., Ferge L., and Young R., 1999. Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53: 491–497.CrossRefGoogle Scholar
  4. Flournoy D.S., Kirk T.K., and Highley T.L., 1991. Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45: 383–388.CrossRefGoogle Scholar
  5. Goodell B., 2003. Brown-rot fungal degradation of wood: our evolving view. In: Goodell B., Nicholas D.D., and Schultz T.P. (Eds.), Wood deterioration and preservation. Advanced in our changing world, American Chemical Society, Washington DC, pp. 97–118.CrossRefGoogle Scholar
  6. Griffin D.M., 1977. Water potential and wood decaying fungi. Ann. Rev. Phytopathol. 15: 319–329.CrossRefGoogle Scholar
  7. Harju A.M. and Venäläinen M., 2006. Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay. Can. J. For. Res. 36: 1797–1804.CrossRefGoogle Scholar
  8. Harju A.M., Kainulainen P., Venäläinen M., Tiitta M., and Viitanen H., 2002. Differences in resin acid concentration between brown-rot resistant and susceptible Scots pine heartwood. Holzforschung 56: 479–486.CrossRefGoogle Scholar
  9. Harju A.M., Venäläinen M., Anttonen S., Viitanen H., Kainulainen P., Saranpää P., and Vapaavuori E., 2003. Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17: 263–268.Google Scholar
  10. Haygreen J.G. and Bowyer J.L., 1996. Forest products and wood science, an introduction, Iowa State University Press, Iowa, 484 p.Google Scholar
  11. Heijari J., Nerg A.-M., Kaakinen S., Vapaavuori E., Raitio H., Levula T., Viitanen H., Holopainen J.K., and Kainulainen P., 2005. Resistance of Scots pine wood to Brown-rot fungi after long-term forest fertilization. Trees 19: 728–734.CrossRefGoogle Scholar
  12. Henriks M.-L., Ekman R., and von Weissenberg K., 1979. Bioassay of some resin acid and fatty acid with Forties annosus. Acta Academiae Aboensis, Ser. B. 39: 1–7.Google Scholar
  13. Highley T.L., Murmanis L., and Palmer J.G., 1983. Electron microscopy of cellulose decomposition by brown-rot fungi. Holzforschung 37: 271–277.CrossRefGoogle Scholar
  14. Jones H.L. and Worrall J.J., 1995. Fungal biomass in decayed wood. Mycologia 87: 459–466.CrossRefGoogle Scholar
  15. Karppanen O., Venäläinen M., Harju A., Willför S., Pietarinen S., Laakso T., and Kainulainen P., 2007. Knotwood as a window to the indirect measurement of the decay resistance of Scots pine heartwood. Holzforschung 61: 600–604.CrossRefGoogle Scholar
  16. Kleist G. and Schmitt U., 2001. Characterisation of a soft rot-like decay pattern caused by Coniophora puteana (Schum.) Karst. in Sapelli wood (Entandrophragma cylindricum Sprague). Holzforschung 55: 573–578.CrossRefGoogle Scholar
  17. Koponen H., 1985. Sorption isotherms of Finnish birch, pine and spruce. Paperi ja Puu 67: 70–77.Google Scholar
  18. Larsen M.J., Winandy J.E., and Green F., 1995. A proposed model of the tracheid cell wall of southern yellow pine having an inherent radial structure in the S2 layer. Mater. Org. 29: 197–210.Google Scholar
  19. Lee K.H., Wi S.G., Singh A.P., and Kim Y.S., 2004. Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. J. Wood Sci. 50: 281–284.CrossRefGoogle Scholar
  20. Prior R.L., Wu X., and Schaich K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 53: 4290–4302.PubMedCrossRefGoogle Scholar
  21. Rawat S.P.S., Khali D.P., Hale M.D., and Breese M.C., 1998. Studies on the moisture adsorbtion behaviour of brown-rot decayed and undecayed wood blocks of Pinus sylvestris using the Brunauer-Emmett-Teller Theory. Holzforschung 52: 463–466.CrossRefGoogle Scholar
  22. Rennerfelt E., 1945. The influence of the phenolic compounds in the heartwood of Scots pine (Pinus sylvestris L.) on the growth of some decay fungi in nutrient solution. Svesk Botanisk Tidskrift 39: 311–318.Google Scholar
  23. Scheffer T.C. and Cowling E.B., 1966. Natural resistance of wood to microbiological deterioration. Ann. Rev. Phytopathol. 4: 147–170.CrossRefGoogle Scholar
  24. Simpson W., 1980. Sorption theories applied to wood. Wood Fiber 12: 183–195.Google Scholar
  25. Skaar C., 1988. Wood-water relations, Springer-Verlag, Berlin, Heidelberg. 283 p.Google Scholar
  26. Söderström B., Finlay R.D., and Read D.J., 1988. The structure and function of the vegetative mycelium of ectomycorrhizal plants, IV. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytol. 109: 163–166.CrossRefGoogle Scholar
  27. Tibbett M.F., Sanders E., and Cairney J.W.G., 2002. Low-temperature changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomeces (Hebeloma spp.). Mycorrhiza 12: 249–255.PubMedCrossRefGoogle Scholar
  28. Venäläinen M., Harju A.M., Kainulainen P., Viitanen H., and Nikulainen H., 2003. Variation in the decay resistance and its relationship with other wood characteristics in old Scots pines. Ann. For. Sci. 60: 409–417.CrossRefGoogle Scholar
  29. Venäläinen M., Harju A.M., Saranpää P., Kainulainen P., Tiitta M., and Veiling P., 2004. The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Sci. Technol. 38: 109–118.CrossRefGoogle Scholar
  30. Walker J.C.F., 1993. Water and wood. In: Walker J.C.F. (Ed.), Primary wood prosessing. Principles and practice, Chapman & Hall, London, pp. 68–94.Google Scholar
  31. Winandy J.E. and Morrell J.J., 1993. Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci. 25: 278–288.Google Scholar
  32. Zabel R. and Morrell J., 1992. Wood microbiology: Decay and its prevention. Academic Press, San Diego, 476 p.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Outi Karppanen
    • 1
  • Martti Venäläinen
    • 1
    Email author
  • Anni M. Harju
    • 1
  • Tapio Laakso
    • 2
  1. 1.Punkaharju Research UnitFinnish Forest Research InstitutePunkaharjuFinland
  2. 2.Vantaa Research UnitFinnish Forest Research InstituteVantaaFinland

Personalised recommendations