Advertisement

Annals of Forest Science

, Volume 65, Issue 5, pp 508–508 | Cite as

Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation

  • Francis ColinEmail author
  • Nicolas Robert
  • Jean-Louis Druelle
  • Florence Fontaine
Original Article

Abstract

  • • Epicormics are important defects of oak timber which originate from suppressed buds placed early and develop into epicormic shoots depending on the light available, which in turn depends on stand density. In this context, our objective was to assess the epicormic shoots present in a 20-year-old experimental plantation of sessile oak and to test and quantify the effect of the three initial densities applied: 1333, 2667 and 5333 stems/ha.

  • • In the 3 stand densities, epicormic shoots were mostly transient and were rarely clustered. A significant but negligible effect of the density on the epicormic length and on the variables related to epicormic counts appeared: the longest epicormic shoots were present in densities 1333 and 2667 while their means were significantly lower for density 5333. When considering the tree descriptors, the best explanatory models of the different epicormic counts involved their relative variations, especially the relative increment (RIV) in the product V = HEIGHT.DBH2. More precisely, emergence of epicormic shoots occurred particularly when trees fell below a threshold value of RIV = 0.26. Such trees belonged mainly to the two highest densities: 2667 and 5333 stems/ha.

  • • When considering only epicormics, none of the tested densities can be recommended. Trees which bear the most numerous epicormic shoots will be naturally eliminated by stand competition.

epicormic shoots plantation spacing Quercus petraea 

L’espacement à la plantation a peu d’influence sur les gourmands éphémères observés en plantation de chêne sessile âgée de 20 ans

Résumé

  • • Les épicormiques sont des défauts importants du bois de chêne. Ils sont issus de bourgeons latents déposés très tôt sur le tronc. Ils peuvent éventuellement se développer en gourmands, selon l’éclairement qui dépend de l’espacement des arbres. Dans ce contexte, nous avons étudié l’effet de la densité de plantation (1333, 2667 et 5333 tiges/ha) sur le développement des pousses épicormiques sur des chênes sessiles âgés de 20 ans.

  • • Dans les trois densités, les pousses épicormiques ne persistent pas et sont généralement isolées. Un effet significatif mais négligeable sur la longueur des épicormiques a été observé : les pousses les plus longues sont présentes dans les densités 1333 et 2667 alors qu’elles sont plus courtes dans la densité 5333. Vis à vis des caractéristiques dendrométriques de l’arbre, les modèles les plus explicatifs des différentes variables de comptage font intervenir la variation relative RIV du produit V = H.D1302 entre les deux campagnes. Plus précisément, en dessous d’une valeur seuil de RTV = 0,26, l’apparition des pousses épicormiques est significativement augmentée; les arbres dans cette situation appartiennent majoritairement aux densités les plus fortes 2667 et 5333 tiges/ha.

  • • En ne prenant en compte que les gourmands, on ne peut recommander une densité particulière. Les arbres qui portent le plus de gourmands sont les moins vigoureux; ils seront éliminés naturellement par la compétition.

pousses épicormiques espacement à la plantation Quercus petraea 

References

  1. Ashton P.M.S., Lowe J.S., and Larson B.C., 1991. Some evidence for the cause of epicormic sprouting in blue mahoe (Hibiscus elatus SW.) in the moist limestone region of Puerto Rico. J. Trop. For. Sci. 3: 123–130.Google Scholar
  2. Auchmoody L., 1972. Epicormic branching: seasonal change, influence of fertilization and frequency of occurence in uncut stands. USDA For. Serv. Res. Paper NE-228: 1–8.Google Scholar
  3. Barthélémy D. and Caraglio Y., 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99: 375–407.PubMedCrossRefGoogle Scholar
  4. Books D.J. and Tubbs C.H., 1970. Relation of light to epicormic sprouting in sugar maple. US For. Ser. Res. Note NC-93, 2 p.Google Scholar
  5. Church T.W. and Godman R.M., 1966. The formation and development of dormant buds in sugar maple. For. Sci. 12: 301–306.Google Scholar
  6. Collett D., 1991. Modelling binary data. Chapman & Hall, London, 369 p.Google Scholar
  7. Courraud R., 1987. Les gourmands sur les chênes rouvre et pédonculé. Forêt-Entreprise 45: 20–33.Google Scholar
  8. Dhôte J.F., 1997. Effets des éclaircies sur le diamètre dominant dans les futaies régulières de hêtres ou de chênse sessiles. Rev. For. Fr. 49: 557–578.Google Scholar
  9. Evans J., 1965. The control of epicormics branches. In: Proceedings of a Seminar held at the University of York, 10–12 April 1985, Advances in Practical Arboriculture, Forestry Commission Bulletin 65: 115–120.Google Scholar
  10. Evans J., 1982. Silviculture of oak and beech in northern France: observations and current trends. Q. J. For. 76: 75–82.Google Scholar
  11. Fabricius L., 1932. Ursachen der Wasserreiserbildung an Eichen. Forstwissenschaft. Centr.bl. 54: 753–766.Google Scholar
  12. Fink S., 1980. Anatomical studies on the occurrence of shoot and root primordia in the stem region of broadleaved and coniferous trees. 1. Proventitious primordia. Allg. Forst-Jagdztg. 151: 160–180.Google Scholar
  13. Fontaine F., 1999. Les bourgeons épicormiques chez le chêne sessile (Quercus petraea) : établissement des bases en vue de l’évaluation dynamique d’un potentiel épicormique, Thèse de doctorat, Université de Reims Champagne-Ardenne, Volume I, 101 p., Volume II, 94 p.Google Scholar
  14. Fontaine F., Colin F., Jarret P., and Druelle J.-L., 2001. Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann. For. Sci. 58: 583–592.CrossRefGoogle Scholar
  15. Harmer R., 1990. The Timing of Canopy and Epicormic shoot growth in Quercus robur L. Forestry 63: 279–283.CrossRefGoogle Scholar
  16. Harmer R., 1992. Do dominant oaks have few epicormic branches? Forestry Commission Research Division, Research Information Note 223, 4 p.Google Scholar
  17. Hedlund A., 1964. Epicormic branching in north Louisiana delta. USDA For. Serv. Res. Note S-O-8: 1–3.Google Scholar
  18. H’Yyushenko A.F. and Romanovskij M.G., 2000. Formation of a secondary crown on pedunculate oak and its role on forest stand dynamics et son rôle dans la dynamique des peuplements forestiers, Lesovedenie 3: 65–72.Google Scholar
  19. Jarret P., 2004. Chênaie atlantique: Guide des sylvicultures. ONF ed., Lavoisier, Paris, 335 p.Google Scholar
  20. Joyce P.M., Huss J., McCarthry R., Pfeifer A., and Hendrick E., 1998. Silvicultural guidelines for ash, sycamore, wild cherry, beech and oak in Ireland. COFORD ed., Dublin, 144 p.Google Scholar
  21. Kormanik P.P., Brown C.L., 1969. Origin and development of epicormic branches in sweetgum. USDA For. Serv. Res. Paper SE-54: 1–17.Google Scholar
  22. Krahl-Urban J., 1955. Forstgenetik in der Eichen- und Buchenwirtschaft. Forstarchiv 26 6: 121–131.Google Scholar
  23. McCullagh P. and Neider J.A., 1983. Generalised linear models. Monographs on Statistics and Applied Probability. Chapman and Hall, London, 532 p.Google Scholar
  24. Meadows J.S., 1995. Epicormic branches and lumber grade of bottomland oak. In: Proceedings of the 23rd annual hardwood symposium Conference Advances in Hardwood Utilisation: Following Profitability from the Woods through Rough Dimension, Cashiers, NC, Memphis, TN: National Hardwood Lumber Association. Lowery G., Meyer D. (Eds.) 19–25.Google Scholar
  25. Meadows J.S. and Burkhardt E.C., 2001. Epicormic branches affect lumber grade and value in willow oak. South. J. Appl. For. 25: 136–141.Google Scholar
  26. Nicolini E., Chanson B., and Bonne F., 2001. Stem growth and epicormic branch formation in understorey beech trees (Fagus sylvatica L.). Ann. Bot. 87: 1–15.CrossRefGoogle Scholar
  27. Nicolini E.Y., Caraglio Y., Pélissier R., Leroy C., and Roggy J.C., 2003. Epicormic branches: a growth indicator for the tropical forest tree Dicorynia guianensis Amshoff (Caesalpiniaceae). Ann. Bot. 92: 97–105.PubMedCrossRefGoogle Scholar
  28. Remphrey W. and Davidson C., 1992. Spatiotemporal distribution of epicormic shoots and their architecture in branches of Fraxinus pennsylvanica. Can. J. For. Res. 22: 336–340.CrossRefGoogle Scholar
  29. Rey-Lescure E., 1982. Distribution des gourmands sur les fûts de 25 essences en bordures de déboisement. Can. J. For. Res. 12: 687–698.CrossRefGoogle Scholar
  30. SAS, 1999. http://v8doc.sas.com/sashtml/Google Scholar
  31. Schalenberg O. and Pierce F.J., 2002. Contemporary statistical models for the Plant and Soil Sciences. CRC Press, Boca Raton, 738 p.Google Scholar
  32. Schmerberg C., 1997. Les arbres face à la lumière. In : La lumière et la forêt, Bulletin Technique ONF N∘ 34, pp. 45–108.Google Scholar
  33. Schmalz J., Frohlich A., and Gebhardt M., 1997. Quality development in young stands of sessile oak (Quercus petraea) in the Spessart district, Hesse: results of a spacing experiment. Forstarchiv 68: 3–10.Google Scholar
  34. Smith H.C., 1966. Epicormic branching on eight species of Appalachian hardwoods, USDA For. Serv. Res. Note NE-53: 1–4.Google Scholar
  35. Spellmann H., 1995. Holzqualität als Beurteilungskriterium im langfristigen Versuchswesen. Forst Holz 23: 743–747.Google Scholar
  36. Spiecker H., 1991. Zur Steuerung des Dickenwachstums und der Astreinigung von Trauben- und Stieleichen (Quercus petraea (Matt.) Liebl. und Quercus robur L.). Schriftenreihe der Landesforstverwaltung, Band 72, 150 p.Google Scholar
  37. Stubbs J., 1986. Hardwood epicormic branching. Small knots but large losses. South. J. Appl. For. 10: 214–220.Google Scholar
  38. Ward J., 1992. Response of woody regeneration to thinning mature upland oak stands in Connecticut, USA. For. Ecol. Manage. 49: 219–231.CrossRefGoogle Scholar
  39. Wignall T.A. and Browning G., 1988. The effects of stand thinning and artificial shading on epicormic bud emergence in pedunculate oak (Quercus robur L.). Forestry 61: 46–59.CrossRefGoogle Scholar
  40. Yokoi S. and Yamaguchi K., 1996. Origin of epicormic branches and effect of thinning on their development in Quercus mongolica var. Grosseserrata. J. Jpn. For. Soc. 78: 169–174.Google Scholar
  41. Zelterman D., 1999. Models for discrete data. Oxford Science Publications, Clarendon Press, Oxford, 233 p.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Francis Colin
    • 1
    Email author
  • Nicolas Robert
    • 1
  • Jean-Louis Druelle
    • 2
  • Florence Fontaine
    • 2
  1. 1.UMR 1092 INRA-ENGREF, Laboratoire des Ressources Forêt-BoisINRA-NancyChampenouxFrance
  2. 2.UFR Sciences, Moulin de la Housse, Laboratoire de StressDéfenses et Reproduction des PlantesReims Cedex 2France

Personalised recommendations