Annals of Forest Science

, Volume 65, Issue 4, pp 407–407

Spatiotemporal patterns in seedling emergence and early growth of two oak species direct-seeded on abandoned pastureland

  • Etienne Laliberté
  • Alain Cogliastro
  • André Bouchard
Original Article

Abstract

  • • Fine-scale spatial and temporal establishment patterns of direct-seeded oaks on abandoned agricultural land have been little studied despite their potential importance for long-term stand structure.

  • • Here we periodically monitored seedling emergence and early growth of bur oak (Quercus macrocarpa Michx.) and red oak (Q. rubra L.) on an abandoned pasture, and tested the effects of herbaceous competition, rodents, and soil physicochemical properties.

  • • Herbaceous competition slightly decreased diameter growth, but rodents had little impact on establishment. Red oak seedlings emerged earlier than bur oak and in a greater proportion (92% vs. 56%). Seedling emergence and early growth of both species showed significant spatial structures that were partly explained by variation in soil physicochemical properties. Bur oak was more responsive to microenvironmental heterogeneity than red oak, yet much of the variation in emergence and growth of both species remained unexplained.

  • • This suggests that other factors, such as acorn size or genetic variability, may exert equal or greater control than microenvironmental heterogeneity over seedling emergence and early growth of these two oak species on abandoned pastureland.

afforestation Quercus macrocarpa Quercus rubra direct seeding old-field 

Patrons spatio-temporels d’émergence et de croissance initiale des semis de deux espèces de chênes semées dans un pâturage abandonné

Résumé

  • • Les patrons spatiaux et temporels à échelle fine de l’établissement de chênes semés en friche agricole ont été peu étudiés bien que ceux-ci puissent avoir des impacts à long terme sur la structure du peuplement.

  • • Nous avons périodiquement suivi l’émergence et la croissance initiale de semis de chêne à gros fruits (Quercus macrocarpa Michx.) et de chêne rouge (Q. rubra L.) dans un pâturage abandonné et évalué l’effet de la compétition herbacée, des rongeurs et des propriétés physico-chimiques du sol.

  • • La compétition herbacée a légèrement réduit la croissance en diamètre, mais les rongeurs ont eu peu d’impacts sur l’établissement. Les semis de chênes rouges ont émergé plus rapidement que ceux du chêne à gros fruits et dans une plus grande proportion (92 % vs. 56 %). L’émergence et la croissance en hauteur des deux espèces exhibaient des structures spatiales significatives qui étaient partiellement expliquées par la variation des propriétés physico-chimiques du sol. Le chêne à gros fruits était plus influencé par l’hétérogénéité microenvironnementale que le chêne rouge, bien que la plus grande partie de la variation de l’émergence et de la croissance des deux espèces soit restée inexpliquée.

  • • Cela suggère que d’autres facteurs, tels que la grosseur des glands ou leur variabilité génétique, pourraient exercer un contrôle aussi ou plus important que l’hétérogénéité microenvironnementale sur l’émergence et la croissance initiale de ces deux espèces semées dans des pâturages abandonnés.

afforestation Quercus macrocarpa Quercus rubra semis direct friche 

References

  1. Allen J.A., 1990. Establishment of bottomland oak plantations on the Yazoo National Wildlife Refuge Complex. South. J. Appl. For. 14: 206–210.Google Scholar
  2. Allen J.A., Keeland B.D., Stanturf J.A., Clewell A.F., and Kennedy H.E. Jr., 2001. A guide to bottomland hardwood restoration. Res. note SRS-40. USDA Forest Service, Southern Research Station, Asheville, NC, USA.Google Scholar
  3. Ashton M.S. and Larson B.C., 1996. Germination and seedling growth of Quercus (section Erythrobalanus) across openings in a mixed-deciduous forest of southern New England, USA. For. Ecol. Manage. 80: 81–94.CrossRefGoogle Scholar
  4. Bariteau L., 1988. La carte géomorphologique au 1:20 000 de modelés polygéniques: un exemple des basses terres du Saint-Laurent. M.Sc. thesis, Département de géographie, Université de Montréal, Montréal, QC, Canada.Google Scholar
  5. Battaglia L.L., Fore S.A., and Sharitz R.R., 2000. Seedling emergence, survival and size in relation to light and water availability in two bottomland hardwood species. J. Ecol. 88: 1041–1050.CrossRefGoogle Scholar
  6. Beon M.-S. and Bartsch N., 2003. Early seedling growth of pine (Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture. Plant Ecol. 167: 97–105.CrossRefGoogle Scholar
  7. Bonfil C., 1998. The effects of seed size, cotyledon reserves, and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina (Fagaceae). Am. J. Bot. 85: 79–87.PubMedCrossRefGoogle Scholar
  8. Borcard D. and Legendre P., 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153: 51–68.CrossRefGoogle Scholar
  9. Bouchard A. and Domon G., 1997. The transformations of the natural landscapes of the Haut-Saint-Laurent (Québec) and their implications on future resource management. Landsc. Urb. Plan. 37: 99–107.CrossRefGoogle Scholar
  10. Bouyoucos G., 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464–465.CrossRefGoogle Scholar
  11. Brisson J. and Bouchard A., 2003. In the past two centuries, human activities have caused major changes in the tree species composition of southern Québec, Canada. Ecoscience 10: 236–246.Google Scholar
  12. Broncano M.J., Riba M., and Retana J., 1998. Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): a multi-factor experimental approach. Plant Ecol. 138: 17–26.CrossRefGoogle Scholar
  13. Brown J.S., Kotler B.P., Smith R.J., and Wirtz Ii W.O., 1988. The effects of owl prédation on the foraging behavior of heteromyid rodents. Oecologia 76: 408–415.Google Scholar
  14. Buckley D.S. and Sharik T.L., 2002. Effect of overstory and understory vegetation treatments on removal of planted northern red oak acorns by rodents. North. J. Appl. For. 19: 88–92.Google Scholar
  15. Clark J.S., Macklin E., Wood L., 1998. Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol. Monogr. 68: 213–235.CrossRefGoogle Scholar
  16. Cogliastro A., Gagnon D., Bouchard A., 1997. Experimental determination of soil characteristics optimal for the growth of ten hardwoods planted on abandoned farmland. For. Ecol. Manage. 96: 49–63.CrossRefGoogle Scholar
  17. Collins B.S. and Battaglia L.L., 2002. Microenvironmental heterogeneity and Quercus michauxii regeneration in experimental gaps. For. Ecol. Manage. 155: 279–290.CrossRefGoogle Scholar
  18. D’Orangeville L., Bouchard A., and Cogliastro A., in press. Post-agricultural forests: landscape-scale patterns add to stand-scale factors in causing insufficient hardwood regeneration For. Ecol. Manage.Google Scholar
  19. Danner B.T. and Knapp A.K., 2001. Growth dynamics of oak seedlings (Quercus macrocarpa Michx. and Quercus muhlenbergii Engelm.) from gallery forests: implications for forest expansion into grasslands. Trees 15: 271–277.CrossRefGoogle Scholar
  20. Dickie I.A., Koide R.T., and Steiner K.C., 2002. Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol. Monogr. 72: 505–521.CrossRefGoogle Scholar
  21. Dray S., Legendre P., and Peres-Neto P., 2006. Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Model. 196: 483–493.CrossRefGoogle Scholar
  22. Esteso-Martinez J., Camarero J.J., and Gil-Pelegrin E., 2006. Competitive effects of herbs on Quercus faginea seedlings inferred from vulnerability curves and spatial-pattern analyses in a Mediterranean stand (Iberian System, northeast Spain). Ecoscience 13: 378–387.CrossRefGoogle Scholar
  23. García D. and Houle G., 2005. Fine-scale spatial patterns of recruitment in red oak (Quercus rubra): What matters most, abiotic or biotic factors? Ecoscience 12: 223–235.CrossRefGoogle Scholar
  24. Germaine H.L. and Mcpherson G.R., 1999. Effects of biotic factors on emergence and survival of Quercus emoryi at lower treeline, Arizona, USA. Ecoscience 6: 92–99.Google Scholar
  25. Globensky Y. 1987. Géologie des basses terres du Saint-Laurent. MM 85-02. Ministère de l’énergie et des ressources du Québec, Québec, Canada.Google Scholar
  26. Gómez J.M., 2004. Importance of microhabitat and acorn burial on Quercus ilex early recruitment: non-additive effects on multiple demographic processes. Plant Ecol. 172: 287–297.CrossRefGoogle Scholar
  27. Goodman R.C., Jacobs D.F., and Karrfalt R.P., 2005. Evaluating desiccation sensitivity of Quercus rubra acorns using X-ray image analysis. Can. J. For. Res. 35: 2823–2831.CrossRefGoogle Scholar
  28. Gordon D.R. and Rice K.J., 1993. Competitive effects of grassland annuals on soil water and blue oak (Quercus douglasii) seedlings. Ecology 74: 68–82.CrossRefGoogle Scholar
  29. Hamerlynck E., Knapp A.K., 1994. Stomatal responses to variable sunlight in bur oak (Quercus macrocarpa Michx.) leaves with different photosynthetic capacities. Int. J. Plant Sci. 155: 583–587.CrossRefGoogle Scholar
  30. Harmer R., 1994. Natural regeneration of broadleaved trees in Britain II: Seed production and predation. Forestry 67: 275–286.CrossRefGoogle Scholar
  31. Harper J.L., 1977. Plant Population Biology, Cambridge University Press, Cambridge, UK.Google Scholar
  32. Harrison J. and Werner P.A., 1984. Colonization by oak seedlings into a heterogeneous successional habitat. Can. J. Bot. 62: 559–563.CrossRefGoogle Scholar
  33. Hutchings M.J., John E.A., and Wijesinghe D.K., 2003. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 84: 2322–2334.CrossRefGoogle Scholar
  34. Johnson P.S., 1990. Quercus macrocarpa Michx. In: Burns R.M., Honkala B.H. (Eds.), Silvics of North America: Hardwoods. Agriculture Handbook 654, USDA Forest Service, Washington, DC.Google Scholar
  35. Johnson R.L., 1983. Nuttal oak direct seeding still successful after 11 years. USDA Forest Service, Res. Note SO-301.Google Scholar
  36. Kaelke C.M., Kruger E.L., and Reich P.B., 2001. Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light-availability gradient. Can. J. For. Res. 31: 1602–1616.CrossRefGoogle Scholar
  37. Kelly V.R. and Canham C.D., 1992. Resource heterogeneity in oldfields. J. Veg. Sci. 3: 545–552.CrossRefGoogle Scholar
  38. King S.L. and Keeland B.D., 1999. Evaluation of reforestation in the Lower Mississippi River Alluvial Valley. Restor. Ecol. 7: 348–359.CrossRefGoogle Scholar
  39. Kormanik P.P., Sung S.S., Kormanik T.L., Schlarbaum S.E., and Zarnoch S.J., 1998. Effect of acorn size on development of northern red oak 1-0 seedlings. Can. J. For. Res. 28: 1805–1813.CrossRefGoogle Scholar
  40. Laliberté E., Bouchard A., and Cogliastro A., in press. Optimizing hardwood reforestation in old-fields: the effects of tree shelters and environmental factors on tree growth and physiology. Restor. Ecol.Google Scholar
  41. Legendre P. and Legendre L., 1998. Numerical Ecology, Elsevier Science, Amsterdam, Netherlands.Google Scholar
  42. Lepers E., Lambin E.F., Janetos A.C., Defries R., Achard F., Ramankutty N., and Scholes R.J., 2005. A synthesis of information on rapid landcover change for the period 1981–2000. Bioscience 55: 115–124.CrossRefGoogle Scholar
  43. Lima S.L. and Dill L.M., 1990. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68: 619–640.CrossRefGoogle Scholar
  44. Löf M., 2000. Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: influence of interference from herbaceous vegetation. Can. J. For. Res. 30: 855–864.Google Scholar
  45. Löf M., Thomsen A., and Madsen P., 2004. Sowing and transplanting of broadleaves (Fagus sylvatica L., Quercus robur L., Prunus avium L. and Crataegus monogyna Jacq.) for afforestation of farmland. For. Ecol. Manage. 188: 113–123.CrossRefGoogle Scholar
  46. Löf M. and Welander N.T., 2004. Influence of herbaceous competitors on early growth in direct seeded Fagus sylvatica L. and Quercus robur L. Ann. For. Sci. 61: 781–788.CrossRefGoogle Scholar
  47. Madsen P. and Löf M., 2005. Reforestation in southern Scandinavia using direct seeding of oak (Quercus robur L.). Forestry 78: 55–64.CrossRefGoogle Scholar
  48. Manson R.H., Ostfeld R.S., and Canham C.D., 2001. Long-term effects of rodent herbivores on tree invasion dynamics along forest-field edges. Ecology 82: 3320–3329.Google Scholar
  49. McCarthy S.E. and Evans J.P., 2000. Population dynamics of overcup oak (Quercus lyrata) in a seasonally flooded Karst depression. J. Torr. Bot. Soc. 127: 9–18.CrossRefGoogle Scholar
  50. Mceuen A.B. and Curran L.M., 2004. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85: 507–518.CrossRefGoogle Scholar
  51. Meteorological Service of Canada, 2006. Canadian climate normals 1971–2000. Environnement Canada.Google Scholar
  52. Millenium Ecosystem Assessment. 2005. Ecosystems and human well-being: Synthesis. Island Press, Washington, DC.Google Scholar
  53. Nilsson U., Gemmel P., Löf M., and Welander T., 1996. Germination and early growth of sown Quercus robur L. in relation to soil preparation, sowing depths and prevention against predation. New For. 12: 69–86.CrossRefGoogle Scholar
  54. Ostfeld R.S., Manson R.H., and Canham C.D., 1997. Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology 78: 1531–1542.CrossRefGoogle Scholar
  55. Puerta-Piñero C., Gomez J.M., and Valladares F., 2007. Irradiance and oak seedling survival and growth in a heterogeneous environment. For. Ecol. Manage. 242: 462–469.CrossRefGoogle Scholar
  56. R Development Core Team, 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  57. Rey Benayas J.M., Espigares T., and Castro-Diez P., 2003. Simulated effects of herb competition on planted Quercus faginea seedlings in Mediterranean abandoned cropland. Appl. Veg. Sci. 6: 213–222.CrossRefGoogle Scholar
  58. Rey Benayas J.M., Navarro J., Espigares T., Nicolau J.M., and Zavala M.A., 2005. Effects of artificial shading and weed mowing in reforestation of Mediterranean abandoned cropland with contrasting Quercus species. For. Ecol. Manage. 212: 302–314.CrossRefGoogle Scholar
  59. Rice K.J., Gordon D.R., Hardison J.L., and Welker J.M., 1993. Phenotypic variation in seedlings of a “keystone” tree species (Quercus douglasii): the interactive effects of acorn source and competitive environment. Oecologia 96: 537–547.CrossRefGoogle Scholar
  60. Sander I.L., 1990. Quercus rubra L. In: Burns R.M., Honkala B.H., (Eds.), Silvics of North America: Hardwoods. Agriculture Handbook 654, USDA Forest Service, Washington, DC.Google Scholar
  61. Sas, 2003. JMP: The Statistical Discovery Software, Cary, NC, USA.Google Scholar
  62. Soil and Plant Analysis Council, 1992. Handbook on reference methods for soil analysis, Council on Soil Testing and Plant Analysis, Georgia University, Athens, GA, USA.Google Scholar
  63. Soucy-Gonthier N., Marceau D., Delage M., Cogliastro A., Domon G., and Bouchard A. 2003. Détection de l’évolution des superficies forestières en Montérégie entre juin 1999 et août 2002 à partir d’images satellitaires Landsat-TM. Institut de recherche en biologie végétale (IRBV), Montréal, QC, Canada.Google Scholar
  64. Tanouchi H., 1996. Survival and growth of two coexisting evergreen oak species after germination under different light conditions. Int. J. Plant Sci. 157: 516–522.CrossRefGoogle Scholar
  65. Tomlinson P.T., Buchshacher G.L., and Teclaw R.M., 1997. Sowing methods and mulch affect 1+0 northern red oak seedling quality. New For. 13: 191–206.CrossRefGoogle Scholar
  66. Tonioli M., Escarre J., Lepart J., and Speranza M., 2001. Facilitation and competition affecting the regeneration of Quercus pubescens Willd. Ecoscience 8: 381–391.Google Scholar
  67. Truax B., Lambert F., and Gagnon D., 2000. Herbicide-free plantations of oaks and ashes along a gradient of open to forested mesic environments. For. Ecol. Manage. 137: 155–169.CrossRefGoogle Scholar
  68. Wittwer R.F., 1991. Direct seeding of bottomland oaks in Oklahoma. South. J. Appl. For. 15: 17–22.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Etienne Laliberté
    • 1
  • Alain Cogliastro
    • 1
  • André Bouchard
    • 1
  1. 1.Institut de recherche en biologie végétale (IRBV)Université de MontréalMontréalCanada
  2. 2.School of ForestryUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations