Annals of Forest Science

, Volume 65, Issue 4, pp 401–401 | Cite as

Lifespan and mortality of old oaks — combining empirical and modelling approaches to support their management in Southern Sweden

  • Igor Drobyshev
  • Mats Niklasson
  • Hans Linderson
  • Kerstin Sonesson
  • Matts Karlsson
  • Sven G. Nilsson
  • Jan Lanner
Original Article

Abstract

  • • Old oaks (Quercus robur L.) play an important role in the southern Scandinavian landscape by providing habitat for a wide range of species, a large proportion of them being currently on the National Redlists.

  • • To provide support for the management of these trees, we review data on oak mortality and formulate a mortality-driven stochastic model analysing interactions between mortality rate, oak recruitment rate into 100–150 age class, and amount of oaks older than 200 years.

  • • Empirical annual mortality rates varied between 0 and 13% with average 1.68%. Trees older 200 years had an average mortality rate of 1.1%. Oaks in the high density forests showed higher mortality (3.2%) as compared to the trees growing in the low density forests (1.2%). A 400-year long modelling exercises indicated that under current mortality rates (regular mortality being centred around 1% annually; and irregular mortality 7% with average return time of 13 years) the long-term maintenance of 20 trees older than 200 years per ha would require an input rate of 1 to 5 trees × year−1 × ha−1 into the 100–150 years old class.

  • • The modelling highlighted the importance of initial oak abundance affecting amount of old trees at the end of shorter (100 years) simulation period.

European hardwoods conservation dendrochronology population dynamics disturbance 

Durée de vie et mortalité des vieux chênes: une approche empirique combinée à une modélisation pour un appui à leur gestion dans le sud de la Suède

Résumé

  • • Les vieux chênes (Quercus robur L.) jouent un rôle important dans le paysage du sud de la Suède en procurant un habitat pour un large éventail d’espèces, une grande proportion d’entre elles étant actuellement dans les Listes rouges nationales.

  • • Pour appuyer la gestion de ces arbres, nous avons examiné les données relatives à la mortalité des chênes et formulons un modèle stochastique de mortalité analysant les interactions entre taux de mortalité, taux de recrutement des chênes dans les classes 100–150 ans et total des chênes plus vieux que 200 ans.

  • • Les taux empiriques de mortalité ont varié entre 0 et 13 % avec une moyenne de 1,68 %. Les arbres de plus de 200 ans présentaient un taux de mortalité de 1,1 %. Dans les plus fortes densités forestières les chênes montraient une mortalité plus élevée (3,2 %) comparativement aux arbres poussant dans des forêts de densité plus faible (1,2 %). Des exercices de modélisation sur 400 ans ont indiqué qu’en dessous d’un taux courant de mortalité (mortalité courante annelle centrée autour de 1 % et mortalité irrégulière de 7 % avec un temps de retour de 13 ans) la maintenance à long terme de 20 vieux arbres par hectare demanderait un taux d’apport de 1 à 5 arbres par an et par hectare dans les classes d’âge de 100 à 150 ans.

  • • Cette modélisation met l’accent sur l’importance de l’abondance initiale des chênes qui affecte la totalité des vieux arbres à la fin d’une période courte de simulation (100 ans).

feuillus européens conservation dendrochronologie dynamique de population perturbation 

References

  1. Ahti T., Hämet-Ahti L., and Jalas J., 1968. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5: 169–211.Google Scholar
  2. Anderson S. and Sonesson K., 1989. Skogsskadeinventering av bok och ek 1988 i Skåne, Blekinge och Halland. Skånelanens samrådsgrupp mot skogsskador, Länsstyrelsen I Kristianstads län. Rapport 7, 33 p.Google Scholar
  3. Ask P. and Nilsson S.G., 2005. Det privata skogsbrukets landscap — en Studie av uthålligt brukande i Stenbrohultsområde. SUFOR report, SLU, ISBN 91-5766851-5.Google Scholar
  4. Auclair A.N.D., Lill J.T., and Revenga C., 1996. The role of climate variability and global warming in the dieback of Northern Hardwoods. Water Air Soil Pollut. 91: 163–186.CrossRefGoogle Scholar
  5. Barklund P. and Wahlström K. 1998. Death of oaks in Sweden since 1987. In: Cech T.L. and Hartman G.T.C. (Eds.), Disease/environment interaction in forest decline. Proceedings of a workshop of the working party Disease/environment interactions in forest decline IUFRO 7.02.06, 16th March–21 March 1998, Vienna, Austria: Federal Forest Research Centre, 193.Google Scholar
  6. Blomberg P., Från Bjuv till Östra Göinge, 2004. In: Blomberg P. and Billqvist M. (Eds.), Skånska jätteträd, Naturskyddföreningen i Skåne, Lund, pp. 75–118.Google Scholar
  7. Blomberg P., Billqvist M., and Ivarsson K., 2004. Personliga porträtt av skånska jättar. In: Blomberg P., Billqvist M. (Eds.), Skånska jätteträd, Naturskyddföreningen i Skåne, Lund, pp. 119–142.Google Scholar
  8. Bridge M.C., Gasson P.E., and Cutler D.F., 1996. Dendroclimatological observations on trees at Kew and Wakehurst Place: Event and pointer years. Forestry 69: 263–269.CrossRefGoogle Scholar
  9. Demchik M.C. and Sharpe W.E., 2000. The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. For. Ecol. Manage. 136: 199–207.CrossRefGoogle Scholar
  10. Dobrovolsky A., 2007. Dynamics of natural mortality and tree structure in Oranienbaum park. Southern Swedish Forest Research Centre, SLU Alnarp No. 92, 41 p.Google Scholar
  11. Drobyshev I., Linderson H., Sonesson K. 2007. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24: 97–108.CrossRefGoogle Scholar
  12. Efron B. and Tibshirani R.J., 1994. An Introduction to the bootstrap, Chapman & Hall.Google Scholar
  13. Eliasson P., 2002. Skog, makt och människor. En miljöhistoria om svensk skog 1800–1875. KSLA.Google Scholar
  14. Eliasson P., 2004. Eek uthi stoor myckenhet. Ekens plats i bondens landscap. In: Blomberg P., Billqvist M. (Eds.), Skånska jätteträd, Naturskyddföreningen i Skåne, Lund, pp. 147–151.Google Scholar
  15. Falinski J.B., 1978. Uprooted trees, their distribution and influence in the primeval forest biotop. Vegetatio 38: 175–183.CrossRefGoogle Scholar
  16. Franklin J.F., Shugart H.H., and Harmon M.E., 1987. Tree death as an ecological process. Bioscience 37: 550–556.CrossRefGoogle Scholar
  17. Fredén C., 2002. Geology. The national atlas of Sweden. SNA Förlag, Stockholm.Google Scholar
  18. Hedin J., 2003. Metapopulation ecology of Osmoderma eremita — dispersal, habitat quality and habitat history, Ph. D. theses Dep. of Ecology, Lund University, Lund.Google Scholar
  19. Lindbladh M., Niklasson M., and Nilsson S.G., 2003. Long-time record of fire and open canopy in a high biodiversity forest in southeast Sweden. Biol. Conserv. 114: 231–243.CrossRefGoogle Scholar
  20. Lindbladh M. and Nilsson S.G., 1999. Skog och träd i kulturlandskapet. Vegetationshistorien i Stenbrohult utifrån biologiska och historiska arkiv. Svensk Botanisk Tidskrift 93: 19–30.Google Scholar
  21. Löf M., 2001. Uthålligt skogsbruk i ädellövskog. Skogsvetenskapliga fakulteten, SLU, Uppsala.Google Scholar
  22. Monserud R.A. and Sterba H., 1999. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manage. 113: 109–123.CrossRefGoogle Scholar
  23. Naumenko I.M., 1949. Drying out of oak in Voronezh strict nature reserve and forestries of Voronezh region, its causes and practical measures. Proceedings of the Voronezh strict nature reserve III, 6–33.Google Scholar
  24. Niklasson M., Lindbladh M., and Bjorkman L., 2002. A long-term record of Quercus decline, logging and fires in a southern Swedish Fagus-Picea forest. J. Veg. Sci. 13: 765–774.Google Scholar
  25. Nilsson N.E., 1996. Forests. Swedish National Atlas. SNA Förlag, Stockholm.Google Scholar
  26. Nilsson S.G., Niklasson M., Hedin J., Aronsson G., Gutowski J.M., Linder P., Ljungberg H., Mikusinski G., and Ranius T., 2002. Densities of large living and dead trees in old-growth temperate and boreal forests. For. Ecol. Manage. 161: 189–204.CrossRefGoogle Scholar
  27. Osipov V.V., 1989. Stand growth conditions in the Central Russian foreststeppe zone. In: Osipov V.V., Selochnik N.N., and Ilyushenko A.F., et al. (Eds.), The state of oak forests in the forest-steppe zone, Nauka Publishing House, Moscow, pp. 5–18.Google Scholar
  28. Osipov V.V. and Selochnik N.N., 1989. The state of oak forests in the Central Russian forest-steppe after materials of reconnoiering inspections in 1984–1987. In: Osipov V.V., Selochnik N.N., Ilyushenko A.F., et al. (Eds.), The state of oak forests in the forest-steppe zone, Nauka Publishing House, Moscow, pp. 199–205.Google Scholar
  29. Ozolincius R., Miksys V., and Stakenas V., 2005. Growth-independent mortality of Lithuanian forest tree species. Scand. J. For. Res. 20: 153–160.CrossRefGoogle Scholar
  30. Pedersen B.S., 1999. The mortality of midwestern overstory oaks as a bioindicator of environmental stress. Ecol. Appl. 9: 1017–1027.CrossRefGoogle Scholar
  31. Pedersen B.S. and McCune B., 2002. A non-invasive method for reconstructing the relative mortality rates of trees in mixed-age, mixed-species forests. For. Ecol. Manage. 155: 303–314.CrossRefGoogle Scholar
  32. Pilcher J. and Gray S., 1982. The relationships between oak tree growth and climate in Britain. J. Ecol. 70: 297–304.CrossRefGoogle Scholar
  33. Pontailler J.Y., Faille A., and Lemee G., 1997. Storms drive successional dynamics in natural forests: a case study in Fontainebleau forest (France). For. Ecol. Manage. 98: 1–15.CrossRefGoogle Scholar
  34. Ranius T. and Hedin J., 2001. The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126: 363–370.CrossRefGoogle Scholar
  35. Ranius T. and Jansson N., 2000. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol. Conserv. 95: 85–94.CrossRefGoogle Scholar
  36. Rosengren U. and Stjernquist I., 2004. Gå på djupet! Om rotdjup och rotprodukiton i olika skogstyper. SUFOR report. ISBN 91-576-6617-2. SUFOR Project, Lund.Google Scholar
  37. Rozas V., 2004. A dendroecological reconstruction of age structure and past management in an old-growth pollarded parkland in northern Spain. For. Ecol. Manage. 195: 205–219.CrossRefGoogle Scholar
  38. Runkle J.R., 2000. Canopy tree turnover in old-growth mesic forests of eastern North America. Ecology 81: 554–567.CrossRefGoogle Scholar
  39. Selochnik N.N., 1989. On the oak forest decline causes. In: Osipov V.V., Selochnik N.N., Ilyushenko A.F., et al. (Eds.), The state of oak forests in the forest-steppe zone, Nauka Publishing House, Moscow, pp. 48–54.Google Scholar
  40. Selochnik N.N. and Kondrashova N.K., 1989. The role of diseases in weakening the decline of oak forests. In: Osipov V.V., Selochnik N.N., Ilyushenko A.F., et al. (Eds.), The state of oak forests in the forest-steppe zone, Nauka Publishing House, Moscow, pp. 115–137.Google Scholar
  41. Senitza E., 1993. Eischenschadinventur 1987–1993. Hrsg.: Hauptverband der Land- und Forstwirtschaftsbetriebe Österreichs, Vienna, 19 p.Google Scholar
  42. Shugart H.H., 1987. Dynamic ecosystem consequences of tree birth and death patterns. Bioscience 37: 596–602.CrossRefGoogle Scholar
  43. Silvertown J.V. and Charlesworth D., 2001. Introduction to plant population biology, Blackwell Science.Google Scholar
  44. Sjörs H., 1963. Amphi-Atlantic zonation, Nemoral to Arctic. In: Löve Á., Löve D. (Eds.), North Atlantic biota and their history, Oxford, pp. 109–125.Google Scholar
  45. Sokal R.R. and Rolf F.J., 1995. Biometry: the principles and practice of statistics in biological research, W.H. Freeman, New York.Google Scholar
  46. Thomas F.M., Blank R., Hartmann G., 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For. Pathol. 32: 277–307.Google Scholar
  47. Tiefenbacher H., 1996. Silvicultural planning under conditions of environmental change: Evaluation of options in a dieback in Austrian oak forests. For. Ecol. Manage. 83: 133–136.CrossRefGoogle Scholar
  48. Valinger E. and Fridman J., 1995. Vindoch snöskadoromfattning och motåtgarder. Skog & Forskning 3: 40–45.Google Scholar
  49. Wolf A., Moller P.F., Bradshaw R.H.W., and Bigler J., 2004. Storm damage and long-term mortality in a semi-natural, temperate deciduous forest. For. Ecol. Manage. 188: 197–210.CrossRefGoogle Scholar
  50. Woods K.D., 2000. Dynamics in late-successional hemlock-hardwood forests over three decades. Ecology 81: 110–126.Google Scholar
  51. Zhao D.H., Borders B., and Wilson M., 2004. Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley. For. Ecol. Manage. 199: 307–322.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Igor Drobyshev
    • 1
  • Mats Niklasson
    • 1
  • Hans Linderson
    • 2
  • Kerstin Sonesson
    • 3
  • Matts Karlsson
    • 1
  • Sven G. Nilsson
    • 4
  • Jan Lanner
    • 5
  1. 1.Southern Swedish Forest Research CentreSLUAlnarpSweden
  2. 2.Laboratory for Wood Anatomy and Dendrochronology, Department of Quaternary GeologyLund UniversityLundSweden
  3. 3.Teacher EducationMalmö UniversityMalmöSweden
  4. 4.Department of Animal EcologyLund UniversityLundSweden
  5. 5.Institution for Landscape PlanningSLUSLU AlnarpSweden

Personalised recommendations