Annals of Forest Science

, Volume 65, Issue 3, pp 306–306 | Cite as

Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate

  • Rafael Poyatos
  • Pilar Llorens
  • Josep Piñol
  • Carles Rubio
Original Article

Abstract

The physiological responses to water deficits of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) were studied under Mediterranean mountain climate. Minimum leaf water potentials were −3.2 MPa for oak and −2.1 MPa for pine, with higher predawn values for pubescent oak. Relative sap flow declined in both species when vapour pressure deficit (D) went above ca. 1.2 kPa, but stomatal control was stronger for pine during the 2003 summer drought. P. sylvestris plant hydraulic conductance on a half-total leaf area basis (kL,s−1) was 1.2–2.6 times higher than the values shown by Q. pubescens, and it showed a considerably steeper decrease during summer. Leaf-level gas exchange was positively related to kL,s−1 in both species. Scots pine was more vulnerable to xylem embolism and closed stomata to prevent substantial conductivity losses. The results of this study confirm that pubescent oak is more resistant to extreme drought events.

canopy stomatal conductance drought hydraulic conductance Mediterranean climate sap flow 

Réponses du pin sylvestre (Pinus sylvestris L.) et du chêne pubescent (Quercus pubescens Wild.) aux déficits hydriques atmosphérique et édaphique sous climat montagnard méditerranéen

Résumé

Les réponses physiologiques aux déficits hydriques du pin sylvestre (Pinus sylvestris L.) et du chêne pubescent (Quercus pubescens Wild.) ont été étudiées sous climat montagnard méditerranéen. Le potentiel hydrique foliaire minimum atteint a été de −3,2 MPa pour le chêne et de −2,1 MPa pour le pin, avec des valeurs de potentiel de base plus élevées pour le chêne pubescent. Un relatif déclin du flux de sève a été observé chez les deux espèces lorsque le déficit de vapeur d’eau dépassait 1,2 kPa, mais le contrôle stomatique a été plus fort chez le pin pendant la sécheresse de l’été 2003. La conductance hydraulique des pins, ramenée à la surface foliaire (kL, s−1) a été de 1,2 à 2,6 fois plus élevée que celle de Quercus pubescens et a présenté une rapide décroissance pendant l’été. Le niveau des échanges gazeux foliaires était positivement corrélé à kL, s−1 chez les deux espèces. Le pin sylvestre est plus vulnérable à l’embolie du xylème et a de ce fait fermé ses stomates pour empêcher une perte substantielle de conductivité hydraulique. Les résultats de cette étude confirment que le chêne pubescent est plus résistant aux épisodes d’extrême sécheresse que le pin sylvestre.

conductance stomatique du couvert sècheresse conductance hydraulique climat méditerranéen flux de sève 

References

  1. [1]
    Addington R.N., Mitchell R.J., Oren R., Donovan L.A., Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris, Tree Physiol. 24 (2004) 561–569.PubMedGoogle Scholar
  2. [2]
    Aranda I., Gil L., Pardos J.A., Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak Quercus petraea (Matt.) Liebl. in South Europe, Plant Ecol. 179 (2005) 155–167.CrossRefGoogle Scholar
  3. [3]
    Becker P., Tyree M.T., Tsuda M., Hydraulic conductance of angiosperms versus conifers: similar transport sufficiency at the whole-plant level, Tree Physiol. 19 (1999) 445–452.PubMedGoogle Scholar
  4. [4]
    Bigler C., Bräker O.U., Bugmann H., Dobbertin M., Rigling A., Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland, Ecosystems 9 (2006) 330–343.CrossRefGoogle Scholar
  5. [5]
    Bréda N., Granier A., Barataud F., Moyne C., Soil water dynamics in an oak stand. I. Soil moisture, water potentials and water uptake by roots, Plant Soil 172 (1995) 17–27.CrossRefGoogle Scholar
  6. [6]
    Bréda N., Huc R., Granier A., Dreyer E., Temperate forest tree and stands under sever drought:a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. Sci. For. 63 (2006) 625–644.CrossRefGoogle Scholar
  7. [7]
    Cavender-Bares J., Holbrook N.M., Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats, Plant Cell Environ. 24 (2001) 1243–1256.CrossRefGoogle Scholar
  8. [8]
    Clearwater M.J., Meinzer F.C., Andrade J.L., Goldstein G., Holbrook N.M., Potential erros in measurement of nonuniform sap flow using heat dissipation probes, Tree Physiol. 19 (1999) 681–687.PubMedGoogle Scholar
  9. [9]
    Cochard H., Bréda N., Granier A., Aussenac G., Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q.robur L.), Ann. Sci. For. 49 (1992) 225–233.CrossRefGoogle Scholar
  10. [10]
    Cochard H., Cruiziat P., Tyree M.T., Use of positive pressures to establish vulnerability curves, Plant Physiol. 100 (1992) 205–209.PubMedCrossRefGoogle Scholar
  11. [11]
    Cochard H., Cruiziat P., Tyree M.T., Vulnerability of several conifers to air embolism, Tree Physiol. 11 (1992) 73–83.PubMedGoogle Scholar
  12. [12]
    Corcuera L., Camarero J.J., Sisó S., Gil-Pelegrín E., Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape, TreesStruct. Funct. 20 (2006) 91–98.Google Scholar
  13. [13]
    CREAF, Inventari Ecologie i Forestal de Catalunya. Regió Forestal IV, Bellaterra, Spain, 2000.Google Scholar
  14. [14]
    Damesin C., Rambal S., Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought, New Phytol. 131 (1995) 159–167.CrossRefGoogle Scholar
  15. [15]
    DeLucia E.H., Maherali H., Carey E.V., Climate-driven changes in biomass allocation in pines, Glob. Change Biol. 6 (2000) 587–593.CrossRefGoogle Scholar
  16. [16]
    Gallart F., Llorens P., Latron J., Regüés D., Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees, Hydrol Earth Syst. Sci. 6 (2002) 527–537.CrossRefGoogle Scholar
  17. [17]
    Granier A., Une nouvelle méthode pur la mesure du flux de sève brute dans le tronc des arbres, Ann. Sci. For. 42 (1985) 193–200.CrossRefGoogle Scholar
  18. [18]
    Granier A., Loustau D., Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data, Agric. For. Meteorol. 71 (1994) 61–81.CrossRefGoogle Scholar
  19. [19]
    Himrane H., Camarero J.J., Gil-Pelegrin E., Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens), Trees 18 (2004) 566–575.CrossRefGoogle Scholar
  20. [20]
    Hubbard R.M., Ryan M.G., Stiller V., Sperry J.S., Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine, Plant Cell Environ. 24 (2001) 113–121.CrossRefGoogle Scholar
  21. [21]
    IPCC, Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 2001.Google Scholar
  22. [22]
    Irvine J., Perks M.P., Magnani F., Grace J., The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance, Tree Physiol. 18 (1998) 393–402.PubMedGoogle Scholar
  23. [23]
    Jalas J., Suominen J., R. L., Atlas Florae Europaeae, in: http://www.helsinki.fi/kmus/afe.html (Ed.), 1999.Google Scholar
  24. [24]
    Kolb T.E., Stone J.E., Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest, Tree Physiol. 20 (1999) 1–12.Google Scholar
  25. [25]
    Latron J., Soler M., Llorens P., Gallart F., Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees), Hydrol. Process 25 (2007) 775–787.Google Scholar
  26. [26]
    Leuzinger S., Zotz G., Asshoff R., Körner C., Responses of deciduous forest trees to severe drought in Central Europe, Tree Physiol. 25 (2005) 641–650.PubMedGoogle Scholar
  27. [27]
    Lo Gullo M.A., Salleo S., Rosso R., Trifilo P., Drought resistance of 2-year-old saplings of Mediterranean forest trees in the field: Relations between water relations, hydraulics and productivity, Plant Soil 250 (2003) 259–272.CrossRefGoogle Scholar
  28. [28]
    Martínez-Vilalta J., Piñol J., Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula, For. Ecol. Manage. 161 (2002) 247–256.CrossRefGoogle Scholar
  29. [29]
    Martinez-Vilalta J., Sala A., Piñol J., The hydraulic architecture of Pinaceae — a review, Plant Ecol. 171 (2004) 3–13.CrossRefGoogle Scholar
  30. [30]
    Meinzer F.C., Functional convergence in plant responses to the environment, Oecologia 134 (2003) 1–11.PubMedCrossRefGoogle Scholar
  31. [31]
    Nadezhdina N., Čermák J., Nadezhdin V., Heat field deformation method for sap flow measurements, in: Èermák J., Nadezhdina N. (Eds.), 4th International Workshop on Measuring Sap Flow in Intact Plants, IUFRO Publications, Zidlochovice, Czech Republic, 1998, pp. 72–92.Google Scholar
  32. [32]
    Nardini A., Pitt F., Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture, New Phytol. 143 (1999) 485–493.CrossRefGoogle Scholar
  33. [33]
    Nardini A., Salleo S., Limitation of stomatal conductance by hydraulic traits: sensing or preventing cavitation? Trees 15 (2000) 14–24.CrossRefGoogle Scholar
  34. [34]
    Pallardy S.G., Čermák J., Ewers F.W., Kaufmann M.R., Parker W.C., Sperry J.S., Water transport dynamics in trees and stands, in: Smith W.K., Hinckley T.M. (Eds.), Resource physiology of conifers, Academic Press, San Diego, 1995, pp. 301–389.Google Scholar
  35. [35]
    Perks M.P., Irvine J., J. Grace, Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought, Tree Physiol. 22 (2002) 877–883.PubMedGoogle Scholar
  36. [36]
    Poyatos R., Čermák J., Llorens P., Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens Willd.) and its implications for tree and stand transpiration measurements, Tree Physiol. 27 (2007) 537–548.PubMedGoogle Scholar
  37. [37]
    Poyatos R., Latron J., Llorens P., Land-use and land cover change after agricultural abandonment. The case of a Mediterranean Mountain Area (Catalan Pyrenees), Mt. Res. Dev. 23 (2003) 52–58.CrossRefGoogle Scholar
  38. [38]
    Richardson L.A., Pressure membrane apparatus: construction and use, Agricultural Engineering 28 (1947) 451–454.Google Scholar
  39. [39]
    Rubio Esteve C., Hidrodinámica de los suelos de un area de montafia media mediterránea sometida a cambios de uso y cubierta, Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2005, 194 p.Google Scholar
  40. [40]
    Stenberg P., Linder S., Smolander H., Flower-Ellis J., Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands, Tree Physiol. 14 (1994) 981–995.PubMedGoogle Scholar
  41. [41]
    Sturm N., Köstner B., Hartung W., Tenhunen J.D., Environmental and endogenous controls on leaf- and stand-level water conductance in a Scots pine plantation, Ann. Sci. For. 55 (1998) 237–253.CrossRefGoogle Scholar
  42. [42]
    Teixeira-Filho J., Damesin C., Rambal S., Joffre R., Retrieving leaf conductances from sap flows in a mixed mediterranean woodland: a scaling exercise, Ann. Sci. For. 55 (1998) 173–190.CrossRefGoogle Scholar
  43. [43]
    Tognetti R., Longobucco A., Raschi A., Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy, New Phytol. 139 (1998) 437–447.CrossRefGoogle Scholar
  44. [44]
    Tognetti R., Longobucco A., Raschi A., Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring, Tree Physiol. 19 (1999) 271–277.PubMedGoogle Scholar
  45. [45]
    Valentini R., Scarascia Mugnozza G.E., Ehleringer J.R., Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystem, Funct. Ecol. 6 (1992) 627–631.CrossRefGoogle Scholar
  46. [46]
    Villar-Salvador P., Castro-Díez P., Pérez-Rontomé C., Montserrat-Martí G., Stem xylem features in three Quercus (Fagaceae) spp. along a climatic gradient in NE Spain, Trees 12 (1997) 90–96.Google Scholar
  47. [47]
    Warren J.M., Meinzer F.C., Brooks J.R., Domec J.C., Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests, Agric. For. Meteorol. 130 (2005) 39–58.CrossRefGoogle Scholar
  48. [48]
    Whitehead D., Jarvis P.G., Coniferous forests and plantations, in: Kozlowski T.T. (Ed.), Water Deficits and Plant Growth, Academic Press, New York, 1981, pp. 49–152.Google Scholar
  49. [49]
    Zweifel R., Zimmerman L., Newberry D.M., Modelling tree water deficit from microclimate: an approach to quantifying drought water stress, Tree Physiol. 25 (2005) 147–156.PubMedGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Rafael Poyatos
    • 1
  • Pilar Llorens
    • 1
  • Josep Piñol
    • 2
  • Carles Rubio
    • 1
  1. 1.Institute of Earth Sciences ‘Jaume Aimera’ (CSIC)BarcelonaSpain
  2. 2.Ecology Unit and CREAF, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations