Advertisement

Annals of Forest Science

, Volume 65, Issue 2, pp 206–206 | Cite as

Empirical models for predicting the production of wild mushrooms in Scots pine (Pinus sylvestris L.) forests in the Central Pyrenees

  • José Antonio BonetEmail author
  • Timo Pukkala
  • Christine R. Fischer
  • Marc Palahí
  • Juan Martínez de Aragón
  • Carlos Colinas
Original Article

Abstract

Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha−1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.

multiple-use forestry forest management non-wood forest products mixed models Lactarius deliciosus 

Modèles empiriques de prédiction de la production de champignons sauvages dans des peuplements de pin sylvestre (Pinus sylvestris L.) des Pyrénées centrales

Résumé

La cueillette de champignons est devenue une activité de loisir très répandue dans les Pyrénées centrales ainsi que dans d’autres régions d’Espagne. Aucun modèle prédictif de production ou de richesse en espèces en fonction des caractéristiques des peuplements et des stations n’est disponible actuellement. La présente étude s’est basée sur des données de récolte de champignons de 24 placettes de pin sylvestre suivies pendant 3 ans pour développer un modèle prédictif pouvant servir de modèle d’aide à la décision pour des opérations de gestion forestière. Un modèle mixte a été mis en œuvre pour analyser les relations entre facteurs stationnels et de peuplement. Les résultats montrent que la production était maximale quand la surface terrière était de l’ordre de 20 m2 ha−1. La production totale ainsi que celle de champignons comestibles et commercialisables augmentaient avec l’altitude et dans les pentes orientées au nord. Le groupe des Lactaires (Lactarius spp.) le plus important champignon commercialisable de la région, présentait des réponses similaires. La variabilité interannuelle de production était étroitement corrélée à celle des pluies automnales. La richesse en espèce était étroitement corrélée à la production totale.

gestion multifonctionnelle des forêts sylviculture gestion forestière produits non ligneux Lactarius deliciosus 

References

  1. [1]
    Alexander S.J., Pilz D., Weber N.S., Brown E., Rockwell V.A., Mushrooms, trees, and money: Value estimates of commercial mushrooms and timber in the Pacific Northwest, Environ. Manage. 30 (2002) 129–141.PubMedCrossRefGoogle Scholar
  2. [2]
    Arnolds E., Conservation and management of natural populations of edible fungi, Can. J. Bot. 73 (1995) 987–998.CrossRefGoogle Scholar
  3. [3]
    Boa E., Wild edible fungi: A global overview of their use and importance to people, Food and Agriculture Organization of the United Nations, Rome, Italy, 2004.Google Scholar
  4. [4]
    Bonet J., Fischer C., Colinas C., The relationship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forest of the central Pyrenees, For. Ecol. Manage. 203 (2004) 157–175.CrossRefGoogle Scholar
  5. [5]
    De Román M., Boa E., The Marketing of Lactarius deliciosus in Northern Spain, Econ. Bot. 60 (2006) 284–290.CrossRefGoogle Scholar
  6. [6]
    Egli S., Ayer F., Can wild edible mushroom production in forests be improved? The example of the La Chaneaz fungus reserve in Switzerland, Champignons et mycorhizes en forêt, Rev. For. Fr. 49 (1997) 235–243.Google Scholar
  7. [7]
    Gange A.C., Gange E.G., Sparks T.H., Boddy L., Rapid and recent changes in fungal fruiting patterns, Science 316 (2007) 71.PubMedCrossRefGoogle Scholar
  8. [8]
    Hernández A., Fernández M., Los Hongos, un recurso más del bosque. Análisis de los principales hábitats de la provincia de Soria, Montes. 52 (1998) 99–114.Google Scholar
  9. [9]
    Hintikka V., On the macromycete flora in oligotrophic pine forests of different ages in South Finland, Acta Bot. Fenn. 136 (1988) 89–94.Google Scholar
  10. [10]
    Högberg P., Nordgren A., Buchmann N., Taylor A., Ekblad A., Högberg M., Nyberg G., Ottosson-Löfvenius M., Read D., Large-scale forest girdling shows that current photosynthesis drives soil respiration, Nature 411 (2001) 789–792.PubMedCrossRefGoogle Scholar
  11. [11]
    Ihalainen M., Pukkala T., Modelling cowberry (Vaccinium vitisidaea) and bilberry (Vaccinium myrtillus) yields from mineral soils and peatlands on the basis visual field estimates, Silva Fenn. 35 (2001) 329–340.Google Scholar
  12. [12]
    Ihalainen M., Alho J., Kolehmainen O., Pukkala T., Expert models for bilberry and cowberry yields in Finnish forests, For. Ecol. Manage. 157 (2002) 15–22.CrossRefGoogle Scholar
  13. [13]
    Ihalainen M., Salo K., Pukkala T., Empirical prediction models for Vaccinium myrtillus and V. vitis-idaea berry yields in North Karelia, Finland, Silva Fenn. 37 (2003) 95–108.Google Scholar
  14. [14]
    Kalamees K., Silver S., Fungal productivity of pine heaths in North-West Estonia, Acta Bot. Fenn. 136 (1998) 95–98.Google Scholar
  15. [15]
    Keizer P.J., Arnolds E., Sucession of ectomycorrhizal fungi in roadside verges planted with common oak (Quercus robur L.) in Drenthe, The Netherlands, Mycorrhiza, 4 (1994) 147–159.CrossRefGoogle Scholar
  16. [16]
    Martínez de Aragon J., Bonet J.A., Fischer C.R., Colinas C., Productivity of ectomycorrhizal and selected edible saprotrophic fungi in pine forests of the pre-Pyrenees Montains, Spain: predictive equations for forest management of mycological resources, For. Ecol. Manage. 252 (2007) 239–256.CrossRefGoogle Scholar
  17. [17]
    Mogas J., Riera P., Bennett J., Accounting for afforestation externalities: a comparison of contingent valuation and choice modelling, European Environment 15 (2005) 44–58.CrossRefGoogle Scholar
  18. [18]
    Mogas J., Riera P., Bennett J., A comparison of contingent valuation and choice modelling with second-order interactions, J. For. Econ. 12 (2006) 5–30.Google Scholar
  19. [19]
    Molina R., Massicotte H.B., Trappe J.M., Ecological role of specificity phenomena in ectomycorrhizal plant communities: potentials for interplant linkages and guild development, in: Read D.J., Lewis D.H., Fitter A.H., Alexander I.J. (Eds.), Mycorrhizas in Ecosystems, CAB International, Wallingford, Oxon, UK, 1992, pp. 106–112.Google Scholar
  20. [20]
    Nara K., Nakaya H., Hogetsu T., Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji, New Phytol. 158 (2003) 193–206.Google Scholar
  21. [21]
    O’Dell T.E., Ammirati J.F., Schreiner E.G., Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone, Can. J. Bot. 77 (1999) 1699–1711.CrossRefGoogle Scholar
  22. [22]
    Ohenoja E., Behaviour of mycorrhizal fungi in fertilized forest, Karstenia, 28 (1988) 27–30.Google Scholar
  23. [23]
    Ohenoja E., Effect of weather conditions on the larger fungi at different forest sites in Northern Finland in 1976–1988, Scientiae Rerum Naturalium, 243 (1993) 11–69.Google Scholar
  24. [24]
    Oria-de-Rueda J.A., Martínez de Azagra A., Ecología y productividad de Pleurotus eryngii (Dc.:Fr.) Quél, y Cantharellus cibarius Fr. en España, Boletín Sociedad Micológica de Madrid, 15 (1991) 5–12.Google Scholar
  25. [25]
    Palahí M., Tomé M., Pukkala T., Trasobares A., Montero G., Site index model for Pinus sylvestris in north-east Spain, For. Ecol. Manage. 187 (2003) 35–47.CrossRefGoogle Scholar
  26. [26]
    Pilz D., Molina R., Commercial harvests of edible mushrooms from the forests of the Pacific Northwest United States: Issues, management, and monitoring for sustainability, For. Ecol. Manage. 155 (2002) 3–16.CrossRefGoogle Scholar
  27. [27]
    Pilz D., Molina R., Mayo J., Effects of thinning young forests on chanterelle mushroom production, J. For. 104 (2006) 9–14.Google Scholar
  28. [28]
    Pilz D., Smith J., Amaranthus M.P., Molina R., Luoma D., Mushrooms and timber. Managing commercial harvesting in the Oregon Cascades, J. For. 97 (1999) 4–11.Google Scholar
  29. [29]
    Snowdon P., A ratio estimator for bias correction in logarithmic regressions, Can. J. For. Res. 21 (1991) 720–724.CrossRefGoogle Scholar
  30. [30]
    SPSS Inc., SPSS Base system syntax reference Guide. Release 14.0., 2005.Google Scholar
  31. [31]
    Straatsma G., Ayer F., Egli S., Species richness, abundance and phenology of fungal fruit bodies over 21 years in a Swiss forest plot, Mycol. Res. 105 (2001) 515–523.CrossRefGoogle Scholar
  32. [32]
    Termorshuizen A.J., The influence of nitrogen fertilizers on ectomycorrhizas and their fungal carpophores in young stands of Pinus sylvestris, For. Ecol. Manag. 57 (1993) 179–189.CrossRefGoogle Scholar
  33. [33]
    Trasobares A., Pukkala T., Miina J., Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain, Ann. Forest Sci. 61 (2004) 9–25.CrossRefGoogle Scholar
  34. [34]
    Wilkins W.H., Harris G.C., The ecology of the larger fungi. V. An investigation into the influence of rainfall and temperature on the seasonal production of fungi in a beechwood and a pinewood, Ann. Appl. Biol. 33 (1946) 179–188.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • José Antonio Bonet
    • 1
    Email author
  • Timo Pukkala
    • 2
  • Christine R. Fischer
    • 1
  • Marc Palahí
    • 3
  • Juan Martínez de Aragón
    • 1
  • Carlos Colinas
    • 1
  1. 1.Centre Tecnologic Forestal de CatalunyaSolsonaSpain
  2. 2.Faculty of ForestryUniversity of JoensuuJoensuuFinland
  3. 3.Mediterranean Regional OfficeEuropean Forest InstituteBarcelonaSpain

Personalised recommendations