Annals of Forest Science

, Volume 64, Issue 8, pp 899–909 | Cite as

Multiscale computation of solar radiation for predictive vegetation modelling

Original Article

Abstract

The recent development of large environmental databases allow the analysis of the ecological behaviour of species or communities over large territories. Solar radiation is a fundamental component of ecological processes, but is poorly used at this scale due to the lack of available data. Here we present a GIS program allowing to calculate solar radiation as well locally as at large scale, taking into account both topographical (slope, aspect, altitude, shadowing) and global (cloudiness and latitude) parameters. This model was applied to the whole of France (540 000 km2) for each month of the year, using only a 50-m digital elevation model (DEM), latitude values and cloudiness data. Solar radiation measured from 88 meteorological stations used for validation indicated a R 2 of 0.78 between measured and predicted annual radiation with better predictions for winter than for summer. Radiation values increase with altitude, and with slope for southern exposure, excepted in summer. They decrease with latitude, nebulosity, and slope for north, east, and west exposures. The effect of cloudiness is important, and reduces radiation by around 20% in winter and 10% in summer. Models of plant distribution were calculated for Abies alba, Acer pseudoplatanus, and Quercus pubescens, for France. The use of solar radiation improved modelling for the three species models directly or through the water balance variable. We conclude that models which incorporates both topographical and global variability of solar radiation can improve efficiency of large-scale models of plant distribution.

solar radiation water balance geographical information system (GIS) digital elevation model (DEM) plant distribution models vegetation modelling 

Calcul multi-échelle du rayonnement solaire pour la modélisation prédictive de la végétation

Résumé

Le développement récent d’importantes bases de données phytoécologiques permet l’analyse du comportement des espèces ou des communautés sur de larges territoires. Le rayonnement solaire est une composante essentielle du fonctionnement des écosystèmes, mais il est peu utilisé à cette échelle du fait du manque de données disponibles. Nous présentons un programme élaboré sous SIG permettant de calculer le rayonnement aussi bien localement que sur de vastes espaces, prenant à la fois en compte des paramètres locaux (pente, exposition, altitude, effet de masque) et globaux (latitude, nébulosité). Ce modèle a permis de calculer le rayonnement solaire sur l’ensemble de la France (540 000 km2), pour chaque mois de l’année, en utilisant seulement un Modèle Numérique de Terrain (MNT) de 50 m de résolution, des valeurs de latitude et des données de nébulosité. Les radiations solaires de 88 postes météorologiques ont été utilisées pour la validation, le R 2 entre le rayonnement annuel prédit par le modèle et celui mesuré sur les postes météorologiques s’établissant à 0,78, avec de meilleures prédictions pour l’hiver que pour l’été. Les valeurs de radiations augmentent avec l’altitude, et la pente pour les expositions sud, hormis en été. Elles diminuent avec la latitude, la nébulosité, et la pente pour les expositions nord, est et ouest. L’effet de la nébulosité est important et réduit le rayonnement d’environ 20 % en hiver et 10 % en été. Des modèles de distribution ont été calculés pour trois essences, Abies alba, Acer pseudoplatanus, et Quercus pubescens, pour la France. L’utilisation du rayonnement solaire améliore les trois modèles, directement ou à travers la variable de bilan hydrique. Nous concluons qu’un modèle de rayonnement solaire qui inclut à la fois la variabilité topographique et des facteurs plus globaux, est approprié pour améliorer l’efficacité des modèles de distribution des plantes réalisés à large échelle.

rayonnement solaire bilan hydrique système d’information géographique (SIG) modèle numérique de terrain (MNT) modèles de distribution des plantes modélisation de la végétation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Austin M.P., Spatial prediction of species distribution: an interface between ecological theory and statistical modelling, Ecol. Model. 157 (2002) 101–118.CrossRefGoogle Scholar
  2. [2]
    Benichou P., Le Breton O., Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques, La Météorologie 7 (1987) 23–34.Google Scholar
  3. [3]
    Brang P., Von Feiten S., Wagner S., Morning, noon, or afternoon: does timing of direct radiation influence the growth of Picea abies seedlings in mountain forests? Ann. For. Sci. 62 (2005) 697–705.CrossRefGoogle Scholar
  4. [4]
    Brisse H., de Ruffray P., Grandjouan G., Hoff M., European vegetation survey. The phytosociological database “Sophy”. Part 1. Calibration of indicator plants. Part 2. Socio-ecological classification of the relevés, Ann. Bot. 53 (1995) 177–223.Google Scholar
  5. [5]
    Campbell G.S., Fundamentals of radiation and temperature relations, in: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (Eds.), Physiological plant ecology I: Responces to the physical environment, Encyclopedia of plant physiology 12A, Springer New York, 1981, pp. 11–40.Google Scholar
  6. [6]
    Cooper P.I., The absorption of solar radiation in solar stills, Sol. Energy 12 (1969).Google Scholar
  7. [7]
    Coudun C., Gégout J.C., Quantitative prediction of the distribution and abundance of Vaccinium myrtillus (L.) with climatic and edaphic factors in french forests, 48th IAVS Symposium, Lisbonne, 2005, pp. 1–19.Google Scholar
  8. [8]
    Coudun C., Gégout J.C., Piedallu C., Rameau J.C., Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France, J. Biogeogr. 33 (2006) 1750–1763.CrossRefGoogle Scholar
  9. [9]
    Davis F., Goetz S., Modeling vegetation pattern using digital terrain data, Lands. Ecol. Vol. 4, No. I, 1990, pp. 69–80.CrossRefGoogle Scholar
  10. [10]
    Dubayah R., Modelling a solar radiation topoclimatology for the Rio Grande river basin, J. Veg. Sci. 5 (1994) 627–640.CrossRefGoogle Scholar
  11. [11]
    Dubayah R., Loechel S., Modeling topographic solar radiation using GOES data, J. Appl. Meteorol. 36 (1997) 141–154.CrossRefGoogle Scholar
  12. [12]
    Dubayah R., Rich P.M., Topographic solar-radiation models for GIS, International J. Geogr. Inf. Syst. 9 (1995) 405–419.CrossRefGoogle Scholar
  13. [13]
    Dubayah R., Vankatwijk V., The topographic distribution of annual incoming solar-radiation in the Rio-Grande river basin, Geophys. Res. Lett. 19 (1992) 2231–2234.CrossRefGoogle Scholar
  14. [14]
    Duguay C.R., Radiation modelling in mountainous terrain: review and status, Mount. Res. Dev. 13 (1993) 339–357.CrossRefGoogle Scholar
  15. [15]
    Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberon J., Williams S., Wisz M.S., Zimmermann N.E., Novel methods improve prediction of species’ distributions from occurrence data, Ecography 29 (2006) 129–151.CrossRefGoogle Scholar
  16. [16]
    Franklin J., Predictive vegetation mapping: Geographic modelling of biospatial patterns in relation to environmental gradients, Prog. Phys. Geogr. 19 (1995) 474–499.CrossRefGoogle Scholar
  17. [17]
    Fu P., Rich P.M., A geometric solar radiation model and its applications in agriculture and forestry, Comput. Electron. Agric. 2003 (2002) 25–35.CrossRefGoogle Scholar
  18. [18]
    Gates D.M. (Ed.), Biophysical Ecology New York, 1980.Google Scholar
  19. [19]
    Gégout J.C., Coudun C., Bailly G., Jabiol B., EcoPlant: a forest site database linking floristic data with soil and climate variables, J. Veg. Sci. 16 (2005) 257–260.CrossRefGoogle Scholar
  20. [20]
    Guisan A., Thuiller W., Predicting species distribution: offering more than simple habitat models, Ecol. Lett. 8 (2005) 993–1009.CrossRefGoogle Scholar
  21. [21]
    Guisan A., Zimmermann N.E., Predictive habitat distribution models in ecology, Ecol. Model. 135 (2000) 147–186.CrossRefGoogle Scholar
  22. [22]
    Hetrick W.A., Rich P.M., Barnes F.J., Weiss S.B., GIS-based solar radiation flux models. GIS, Photogrammetry and Modeling 3: 132–43, American Society for Photogrammetry and Remote Sensing, Technical papers GIS Photogrammetry and Modelling, Vol. 3, 1993, pp. 132–143.Google Scholar
  23. [23]
    Hofierka J., Suri M., The solar radiation model for Open source GIS: implementation and applications (2002), Open source GIS — GRASS User conference 2002, Trento, Italy, 2002.Google Scholar
  24. [24]
    Horsch B., Modelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models, Ecol. Model. 168 (2003) 267–282.CrossRefGoogle Scholar
  25. [25]
    Huld T.A., Šúri M., Dunlop E.D., GIS-based estimation of solar radiation and PV generation in central and eastern Europe on the web., 9th EC-GI&GIS Workshop, Coruña, Spain, 2003.Google Scholar
  26. [26]
    Kang S.Y., Kim S., Lee D., Spatial and temporal patterns of solar radiation based on topography and air temperature, Can. J. For. Res. J. Can. Rech. For. 32 (2002) 487–497.CrossRefGoogle Scholar
  27. [27]
    Kasten F., Czeplak G., Solar and terrestrial radiation dependent of the amount and type of cloud, Sol. Energy 24 (1980) 177–189.CrossRefGoogle Scholar
  28. [28]
    Kreith F., Kreider J.F., Principles of solar engineering, Hemisphere Publishing Corp., Washington DC, 1978.Google Scholar
  29. [29]
    Kumar L., Skidmore A., Radiation-vegetation relationships in a Eucalyptus forest, Photogramm. Eng. Remote Sens. 66 (2000) 193–204.Google Scholar
  30. [30]
    Kumar L., Skidmore A.K., Knowles E., Modelling topographic variation in solar radiation in a GIS environment, Int. J. Geogramm. Inf. Sci. 11 (1997) 475–497.CrossRefGoogle Scholar
  31. [31]
    Lebourgeois F., Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and Spruce (Picea abies Karst) from the French permanent plot network (RENECOFOR), Ann. For. Sci. 64 (2007) 333–343.CrossRefGoogle Scholar
  32. [32]
    Lehmann A., Leathwick J.R., Overton J.M., Assessing New Zealand fern diversity from spatial predictions of species assemblages, Biodiv. Conserv. 11 (2002) 2217–2238.CrossRefGoogle Scholar
  33. [33]
    List R.J., Smithsonian Meteorological Tables, 6th rev. ed., Smithsonian Institution, Washington DC, USA, 1984.Google Scholar
  34. [34]
    Liu B.Y., Jordan R.C., The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Sol. Energy 4 (1960) 1–19.CrossRefGoogle Scholar
  35. [35]
    McCullagh P., Neider J.A., Generalized linear models, Chapman & Hall, London, UK, 1997.Google Scholar
  36. [36]
    Meentemeyer R.K., Moody A., Franklin J., Landscape-scale patterns of shrub-species abundance in California chaparral: The role of topographically mediated resource gradients, Plant Ecol. 156 (2001) 19–41.CrossRefGoogle Scholar
  37. [37]
    Miller J., Franklin J., Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence, Ecol. Model. 157 (2002) 227–247.CrossRefGoogle Scholar
  38. [38]
    Moser D., Dullinger S., Englisch T., Nikifeld H., Plutzar C., Sauberer N., Zechmeister H.G., Grabherr G., Environmental determinants of vascular plant species richness in the Austrian Alps, J. Biogeogr. 32 (2005) 1117–1127.CrossRefGoogle Scholar
  39. [39]
    New M., Hulme M., Jones P., Representing twentieth-century space-time climate variability. Part I: Development of a 1961–1990 mean monthly terrestrial climatology, J. Clim. 12 (1999) 829–856.CrossRefGoogle Scholar
  40. [40]
    Ohmann J.L., Gregory M.J., Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA, Can. J. For. Res. 32 (2002) 725–741.CrossRefGoogle Scholar
  41. [41]
    Oke T.R., Boundary layer climates, Methuen, NY, USA, 1987.Google Scholar
  42. [42]
    Pinto P., Gégout J.C., Hervé J.C., Dhôte J.F., Changes in environmental controls of Abies alba growth in Vosges mountains during the twentieth century, Glob. Ecol. Biogeogr. 16 (2007) 472–484.CrossRefGoogle Scholar
  43. [43]
    Pinto P.E., Gegout J.C., Assessing the nutritional and climatic response of temperate tree species in the Vosges mountains, Ann. For. Sci. 62 (2005) 761–770.CrossRefGoogle Scholar
  44. [44]
    Rameau J.C., Mansion D., Dumé G., Flore forestière française — guide écologique illustré — tome 2: Montagnes, Institut pour le Développement, Paris, 1993.Google Scholar
  45. [45]
    Reuter H.I., Kersebaum K.C., Wendroth O., Modelling of solar radiation influenced by topographic shading — evaluation and application for precision farming, Phys. Chem. Earth 30 (2005) 143–149.Google Scholar
  46. [46]
    Rich P., Hetrick W., Savings S., Modelling topographical influences on solar radiation: manual for the solarflux model, Los Alamos national laboratories, Los Alamos, USA, 1995.CrossRefGoogle Scholar
  47. [47]
    Thornton P.E., Hasenauer H., White M.A., Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria, Agric. For. Meteorol. 104 (2000) 255–271.CrossRefGoogle Scholar
  48. [48]
    Thuiller W., Lavorel S., Araujo M.B., Sykes M.T., Prentice I.C., Climate change threats to plant diversity in Europe, Proceedings of the National Academy of Sciences of the USA 102 (2005) 8245–8250.PubMedCrossRefGoogle Scholar
  49. [49]
    Thuiller W., Vayreda J., Pino J., Sabate S., Lavorel S., Gracia C., Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain), Glob. Ecol. Biogeogr. 12 (2003) 313–325.CrossRefGoogle Scholar
  50. [50]
    Turc L., Evaluation des besoins en eau d’irrigation et évaporation potentielle, Ann. Agron. 12 (1961) 13–49.Google Scholar
  51. [51]
    Turner M.G., Gergel S.E., Dixon M.D., Miller J.R., Distribution and abundance of trees in floodplain forests of the Wisconsin river: Environmental influences at different scales, J. Veg. Sci. 15 (2004) 729–738.Google Scholar
  52. [52]
    Van Dam O., Forest filled with gaps: effects of gap size on water and nutrient cycling in tropical rain forest: a study in Guyana, Université d’Utrecht, The Netherlands, 2001, p. 208.Google Scholar
  53. [53]
    Wilson J.P., Gallant J.C., Terrain analysis, principles and applications, John Wiley and sons, 2000.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  1. 1.LERFoB UMR INRA-ENGREF 1092 - Équipe Écologie ForestièreAgroparisTech-ENGREFNancy CedexFrance

Personalised recommendations