Advertisement

Annals of Forest Science

, Volume 64, Issue 8, pp 865–873 | Cite as

Nursery fertilisation affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. cuttings

  • Manuel FernándezEmail author
  • Celia Marcos
  • Raúl Tapias
  • Federico Ruiz
  • Gustavo López
Original Article

Abstract

Eucalyptus globulus is widely used in productive exotic plantations but the expansion of these plantations is limited by low temperatures, as its cold hardening capacity is limited (0.5 to 3.0 °C). It is not well understood how nursery fertilisation affects the field performance of plants. This led us to study the effect of three mineral nutrients (N, P and K) on both plant quality and frost tolerance. The experiment comprised eight growth treatments in which a high dose (H-) or a low dose (L-) of each nutrient was applied. Nitrogen was the nutrient that determined shoot growth, new root growth after transplanting (root egress), frost tolerance and field performance. Performance was better with treatment H-N than with treatment L-N, leaf nitrogen contents being 1.53 and 0.89% respectively. The effects of phosphorus and potassium were not significant between treatments for any parameter. The exception was P which, when interacting with N, favoured root egress for the H-N treatment. It was concluded that nursery fertilisation offers a management tool for eucalyptus growers concerned with plant stock quality.

field performance frost tolerance mineral nutrients non-structural carbohydrates root egress 

La fertilisation en pépinière affecte la tolérance au froid et la qualité des plants bouturés d’Eucalyptus globulus Labill

Résumé

Eucalyptus globulus est largement utilisé dans des plantations exotiques productives, mais l’expansion de ces plantations est limitée par les basses températures, étant donné que l’endurcissement potentiel au froid de cette espèce est limité (0,5 à 3,0 °C). On ne comprenait pas bien comment la fertilisation en pépinière pouvait affecter la performance en plantation des plants. Ceci nous a amené à étudier l’effet de trois nutriments minéraux (N, P et K) sur la qualité des plants et la résistance au froid. L’expérimentation a comporté huit traitements pour l’étude de la croissance pour lesquels une forte dose (H-) ou une faible dose (L-) de chaque nutriment a été apportée. L’azote a été le nutriment qui a déterminé la croissance de la pousse, la croissance de nouvelles racines après transplantation (émission de racines), la résistance au froid et la performance en plantation. Les performances étaient meilleures avec le traitement H-N que avec le traitement L-N, la teneur en azote des feuilles atteignant respectivement 1,53 et 0,89 %. Les effets du phosphore et du potassium n’ont été significatifs pour aucun des paramètres. L’exception a concerné le phosphore qui lorsqu’il était en interaction avec l’azote a favorisé l’émission de racines dans le traitement H-N. On conclut de cette étude que la fertilisation en pépinière offre un outil de gestion pour les producteurs d’eucalyptus confrontés au problème de la qualité des plants.

performance en plantation tolérance au froid nutriments minéraux hydrates de carbones non structuraux émission de racines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Almeida M.H., Chaves M.M., Silva J.C., Cold acclimation in eucalypt hybrids, Tree Physiol. 14 (1994) 921–932.PubMedGoogle Scholar
  2. [2]
    Beadle C., Sands P., Synthesis of the physiological, environmental, genetic and silvicultural determinants of the growth and productivity of eucalypts in plantations, For. Ecol. Manage. 193 (2004) 1–3.CrossRefGoogle Scholar
  3. [3]
    Bigras F.J., Gonzalez A., D’Aoust A.L., Hébert C., Frost hardiness, bud phenology and growth of containerized Picea mariana seedlings grown at three nitrogen levels and three temperature regimes, New For. 12 (1996) 243–259.Google Scholar
  4. [4]
    Boorse G.C., Ewers F.W., Davis S.D., Response of chaparral shrubs to below freezing temperatures: acclimation, ecotypes, seedlings vs. adults, Am. J. Bot. 85 (1998) 1224–1230.PubMedCrossRefGoogle Scholar
  5. [5]
    Burdett A.N., Understanding root growth capacity: Theoretical considerations in assessing planning stock quality by means of root growth test, Can. J. For. Res. 17 (1987) 768–775.CrossRefGoogle Scholar
  6. [6]
    Caldeira M.C., Fernandez V., Tomé J., Pereira J.S., Positive effect of drought on longicorn borer larval survival and growth on eucalyptus trunks, Ann. For. Sci. 59 (2002) 99–106.CrossRefGoogle Scholar
  7. [7]
    Carvajal F.L., Caracterización morfo-fisiológica de plantas fore-stales cultivadas en dos viveros de diferentes localidades, Final-year Dissertation, Escuela Politécnica Superior, Huelva University, Spain, 2004.Google Scholar
  8. [8]
    Cheaïb A., Mollier A., Thunot S., Lambrot C., Pellerin S., Loustau D., Interactive effects of phosphorus and light availability on early growth of maritime pine seedlings, Ann. For. Sci. (2005) 575–583.Google Scholar
  9. [9]
    Close D.C., Beadle C.L., Brown P.H., Holz G.K., Cold-induced photoinhibition affects establishment of Eucalyptus nitens (Deane and Maiden) Maiden and Eucalyptus globulus Labill., Trees 15 (2000) 32–41.CrossRefGoogle Scholar
  10. [10]
    Close D.C., Brown P.H., Hovenden M.J., Beadle C.L., Eucalypt seedling hardiness to low temperature: a synthesis, Combined Proceedings International Plant Propagators Society 53 (2003) 116–119.Google Scholar
  11. [11]
    Colombo S.J., Glerum C., Webb D.P., Day length, temperature and fertilisation effects on desiccation resistance, cold hardiness and root growth potential of Picea mariana seedlings, Ann. For. Sci. 60 (2003) 307–317.CrossRefGoogle Scholar
  12. [12]
    Dalla-Tea F., Marcó M.A., Fertilisers and eucalypt plantations in Argentina, in: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO, Australia, 1996, pp. 327–333.Google Scholar
  13. [13]
    Dumroese R.K., Hardening fertilization and nutrient loading of conifer seedlings, in: Riley L.E., Dumroese R.K., Landis T.D., USDA Forest Service, Proceedings RMRS-P-28, 2003, pp. 31–36.Google Scholar
  14. [14]
    Fernández M., Arias M.T., Pardos J.A., Ruiz F., Soria F., The Eucalyptus globulus clone resistance to Phoracantha semipunctata depends on its response to water stress, Proceedings of the 10th MEDECOS CONFERENCE: Ecology, Conservation and Management of Mediterranean Climate Ecosystems, 2004 Rhodes (Greece), April 5 to May 1.Google Scholar
  15. [15]
    Fernández M., Royo A., Gil L., Pardos J.A., Effects of temperature on growth and stress hardening development of phytotron-grown seedlings of Aleppo pine (Pinus halepensis Mill.), Ann. For. Sci. 60 (2003) 277–284.CrossRefGoogle Scholar
  16. [16]
    Fernández M., Ruiz S., Tapias R., Soria F., Mineral nutrition affects cold hardening development of rooted cuttings Eucalyptus globulus Labill. clones, in: Borralho N.M.G., Pereira J.S., Marques C., Coutinho J., Madeira M., Tomé M. (Eds.), Eucalyptus in a changing world, Proc. IUFRO Conf., Aveiro (Portugal), 2004, 11–15 October, pp. 509–512.Google Scholar
  17. [17]
    Gallino J.P., Fernández M., Tapias R., Alcuña M.M., Cañas I., Aclimatación al frío en diferentes clones de Eucalyptus globulus Labill. durante el régimen natural de endurecimiento, Proceedings of the 2° Simposio Iberoamericano de Eucalyptus globulus, Vigo University, Pontevedra (Spain), 2006, October, 17–21.Google Scholar
  18. [18]
    Gaspar M.J., Borralho N., Lopes Gomes A., Comparison between field performance of cuttings and seedlings of Eucalyptus globulus, Ann. For. Sci. 62 (2005) 837–841.CrossRefGoogle Scholar
  19. [19]
    Graciano C., Guiamet J.J., Goya J.F., Impact of nitrogen and phosphorus fertilisation on drought responses in Eucalyptus grandis seedlings, For. Ecol. Manage. 212 (2005) 40–49.CrossRefGoogle Scholar
  20. [20]
    Judd T.S., Attiwill P.M., Adams M.A., Nutrient concentrations in eucalypts: a synthesis in relation to differences between taxa, sites and components, in: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO, Australia, 1996, pp. 123–153.Google Scholar
  21. [21]
    Harvey H.P., van den Driessche R., Nutrition, xylem cavitation and drought resistance in hybrid poplar, Tree Physiol. 17 (1997) 647–654.PubMedGoogle Scholar
  22. [22]
    Harwood C.E., Frost resistance of subalpine Eucalyptus species. I. Experiments using a radiation frost room, Aust. J. Bot. 28 (1980) 587–599.CrossRefGoogle Scholar
  23. [23]
    Helenius P., Louranen J., Rikala R., Physiological and morphological responses of dormant and growing Norway spruce container seedlings to drought after planting, Ann. For. Sci. 62 (2005) 201–207.CrossRefGoogle Scholar
  24. [24]
    Hovenden M.J., Warren C.R., Photochemistry, energy dissipation and cold-hardening in Eucalyptus nitens and E. pauciflor, Aust. J. Plant Physiol. 25 (1998) 581–589.CrossRefGoogle Scholar
  25. [25]
    Kaul O.N., Gupta A.C., Tandon V.N., Nutrition studies on Eucalyptus IV: Diagnosis of mineral deficiencies in Eucalyptus globulus seedlings, Indian Forester 94 (1980) 453–456.Google Scholar
  26. [26]
    Kriedemann P.E., Cromer R.N., The nutritional physiology of the eucalypts nutrition and growth, in: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO, Australia, 1996, pp. 109–121.Google Scholar
  27. [27]
    Kontunen-Soppela S., Dehydrins in Scots pine tissues: responses to annual rhythm, low temperature and nitrogen, Oulu University Press, Oulu, Finland, 2001, 44 p., URL: http://herkules.oulu.fi/isbn9514259114/.Google Scholar
  28. [28]
    Landis T.D., Mineral nutrients and fertilization, in: Landis T.D., Tinus R.W., McDonald S.E., Barnett J.P. (Eds.), The container tree nursery manual, Vol. 4, Agriculture Handbook 674, USDA, Forest Service, 1989, pp. 1–70.Google Scholar
  29. [29]
    Landis T.D., Macronutrients — Potassium, Forest Nursery Notes, USDA, Forest Service, R6-CP-TP-11-04, 2005.Google Scholar
  30. [30]
    Landis T.D., van Steenis E., Macronutrients — Nitrogen: part 2, Forest Nursery Notes, USDA, Forest Service, R6-CP-TP-01-04, 2004.Google Scholar
  31. [31]
    Landis T.D., van Steenis E., Macronutrients — Phosphorus, Forest Nursery Notes, USDA, Forest Service, R6-CP-TP-07-04, 2004.Google Scholar
  32. [32]
    Lantz C.W., Biesterfeldt R.C., Moorheal DJ., Aycock O.E., Barham R.O., Brissette J.C., Dierauf T.A., Dougherty P.M., Fryar R.D., Ross O.E., Schroeder R.A., Stauder A.F., Care and planting of Southern pine seedlings, USDA, Forest Service, Southern Region, Management Bulletin, RB-ME39, 1996.Google Scholar
  33. [33]
    Leborgne N., Teulieres C., Cauvin B., Travert S., Boudet A.M., Carbohydrate content of Eucalyptus gunnii leaves along a annual cycle in the field and during induced frost-hardening in controlled conditions, Trees 10 (1995) 86–93.CrossRefGoogle Scholar
  34. [34]
    Marshall J.D., Carbohydrates status as a measure of seedling quality, in: Duryea M.L. (Ed.), Evaluating seedling quality: principles, procedures, and predictive abilities of major tests, Oregon State University, Corvallis, OR (USA), 1985, pp. 49–58.Google Scholar
  35. [35]
    Marschner H., Mineral nutrition of higher plants, Academic Press limited, London, UK, 1995.Google Scholar
  36. [36]
    Negi J.D.S., Sharma S.C., Mineral nutrition and resource conservation in Eucalyptus plantations and other forest covers in India, in: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO, Australia, 1996, pp. 399–416.Google Scholar
  37. [37]
    Pardos M., Royo A., Gil L., Pardos J.A., Effect of nursery location and outplanting date on field performance of Pinus halepensis and Quercus ilex seedlings, Forestry 76 (2003) 67–81.CrossRefGoogle Scholar
  38. [38]
    Pinkard E.A., Baillie C.C., Patel V., Mohammed C.L., Effects of fertilising with nitrogen and phosphorus on growth and crown conditions of Eucalyptus globulus Labill. experiencing insect defoliation, For. Ecol. Manage. 231 (2006) 131–137.CrossRefGoogle Scholar
  39. [39]
    Pinkard E.A., Baillie C.C., Patel V., Paterson S., Battaglia M., Smethurst P.J., Mohammed C.L., Wardlaw T., Stone C., Growth responses of Eucalyptus globulus Labill. to nitrogen application and severity, pattern and frequency of artificial defoliation, For. Ecol. Manage. 229 (2006) 378–387.CrossRefGoogle Scholar
  40. [40]
    Pita P., Pardos J.A., Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit, Tree Physiol. 21 (2001) 599–607.PubMedGoogle Scholar
  41. [41]
    Prado J.A., Toro J.A., Silviculture of Eucalypt plantations in Chile, in: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO, Australia, 1996, pp. 357–369.Google Scholar
  42. [42]
    Rikala R., Heiskanen J., Lahti M., Autumn fertilization in the nursery affects growth of Picea abies container seedlings after transplanting, Scand. J. For. Res. 19 (2004) 409–414.CrossRefGoogle Scholar
  43. [43]
    Romanyà J., Vallejo V.R., Nutritional status and deficiency diagnosis of Pinus taeda plantations in Spain, For. Sci. 42 (1996) 192–197.Google Scholar
  44. [44]
    Rose R.W., Rose C.L., Omi S.K., Forry K.R., Durall D.M., Bigg W.L., Starch determination by perchloric acid vs. enzymes: evaluating the accuracy and precision of six colorimetric methods, J. Agric. Food. Chem. 39 (1991) 2–11.CrossRefGoogle Scholar
  45. [45]
    Ruiz de la Torre J., Flora Mayor, Organismo Autónomo Parques Naturales, Ministerio de Medio Ambiente, Madrid, Spain, 2006.Google Scholar
  46. [46]
    Sánchez-Olate M., Zapata J., R⩝s D., Pereira G., Escobar R., Efecto del fotoperíodo en el desarrollo de plantas de Eucalytus globulus Labill. ssp. globulus cultivadas en vivero, Bosque 24 (2003) 23–28.Google Scholar
  47. [47]
    Scarascia-Mugnozza G., Valentiny E., Kuzminski E., Giordano E., Freezing mechanisms, acclimation processes and cold injury in Eucalyptus species planted in the Mediterranean region, For. Ecol. Manage. 29 (1989) 81–94.CrossRefGoogle Scholar
  48. [48]
    Simpson D.G., Ritchie G.A., Does RGP predict field performance? A debate, New For. 13 (1997) 253–277.Google Scholar
  49. [49]
    Snowdon P., Nutritional disorders and other abiotic stresses of Eucalyptus, in: Keane P.J., Kile G.A., Podger F.D., Brown B.N. (Eds.), Diseases and pathogens of Eucalyptus, CSIRO Publishing, Collingwood, Australia, 2000, pp. 385–410.Google Scholar
  50. [50]
    Spiro R.G., Analysis of sugars found in glycoproteins, in: Neufeld E.F., Ginsburg V. (Eds.), Methods in ezymology, Vol. VIII, Complex carbohydrates, Academic Press, New York, 1966, pp. 3–26.CrossRefGoogle Scholar
  51. [51]
    Thompson B.E., Seedling morphology: what you can tell by looking, in: Duryea M.L. (Ed.), Evaluating seedling quality: principles, procedures, and predictive abilities of major tests, Oregon State University, Corvallis, OR (USA), 1985, pp. 59–71.Google Scholar
  52. [52]
    Toval G., The Eucalytus globulus clonal silviculture in Mediterranean climate, in: Borralho N.M.G., Pereira J.S., Marques C., Coutinho J., Madeira M., Tomé M. (Eds.), Eucalyptus in a changing world, Proc. Int. IUFRO Conf., 2004, Aveiro (Portugal) 11–15 October, pp. 70–78.Google Scholar
  53. [53]
    Ukaji N., Kuwabara C., Takezawa D., Arakawa K., Fujikawa S., Accumulation of pathogenesis-related (PR) 10/Bet v 1 protein homologues in mulberry (Morus bombycis Koidz.) tree during winter, Plant Cell Environ. 27 (2004) 112–1121.CrossRefGoogle Scholar
  54. [54]
    Van den Driessche R., Effects of nutrients on stock performance in the forest, in: Van den Driessche R. (Ed.), Mineral nutrition of conifer seedlings, CRC Press, Boca Raton, Florida, 1991, pp. 229–260.Google Scholar
  55. [55]
    Valentini R., Scarascia-Mugnozza G., Giordano E., Kuzminsky E., Influence of cold hardening on water relations of three Eucalyptus species, Tree Physiol. 6 (1990) 1–10.PubMedGoogle Scholar
  56. [56]
    Villar-Salvador P., Planelles R., Oliet J., Peñuelas-Rubira J.L., Jacobs D.J., González M., Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery, Tree Physiol. 24 (2004) 1147–1155.PubMedGoogle Scholar
  57. [57]
    Villar-Salvador P., Puértolas J., Peñuelas J.L., Planelles R., Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species, Invest. Agrar.: Sist. Recur. For. 14 (2005) 408–418.Google Scholar
  58. [58]
    Warren C.R., McGrath J.F., Adams M.A., Differential effects of N, P and K on photosynthesis and partitioning of N in Pinus pinaster needles, Ann. For. Sci. 62 (2005) 1–8.CrossRefGoogle Scholar
  59. [59]
    Whitehead D., Beadle C.L., Physiological regulation of productivity and water use in Eucalyptus: a review, For. Ecol. Manage. 193 (2004) 113–140.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Manuel Fernández
    • 1
    Email author
  • Celia Marcos
    • 1
  • Raúl Tapias
    • 1
  • Federico Ruiz
    • 2
  • Gustavo López
    • 2
  1. 1.Departamento de Ciencias Agroforestales, Escuela Politécnica SuperiorUniversidad de HuelvaPalos de la Frontera, HuelvaSpain
  2. 2.S.A. Centro de Investigación y TecnologíaGrupo Empresarial ENCEHuelvaSpain

Personalised recommendations