Advertisement

Annals of Forest Science

, Volume 64, Issue 8, pp 831–837 | Cite as

Patterns of longitudinal within-tree variation in pulpwood and solidwood traits differ among Eucalyptus globulus genotypes

  • Matthew G. HamiltonEmail author
  • Bruce L. Greaves
  • Brad M. Potts
  • Gregory W. Dutkowski
Original Article

Abstract

Wood discs were sampled from 6 heights up the stem of 248 trees representing 10 subraces and 116 families grown in an E. globulus base-population progeny trial. The lower stem had the least favourable wood properties for kraft pulpwood and most solidwood applications: bark was thickest, basic density was lowest and kino, decay and shrinkage traits were greatest at or below 12% of tree height. Significant genetic differences at the subrace level were revealed in diameter, bark thickness, basic density, decay and gross shrinkage and at the family within subrace level in diameter, basic density and decay. However, subrace-by-height-category interactions in bark thickness, basic density, decay and gross shrinkage indicated that differences among subraces were dependent on height in these traits. Examination of longitudinal trends revealed some evidence that the zone of thick basal bark extended further up the stem in thicker-barked subraces and that the Southern Tasmania subrace might be less effective than other subraces in restricting the longitudinal spread of decay after infection.

wood properties Eucalyptus globulus longitudinal variation within-tree variation genetic variation 

Les variations longitudinales intra-arbre des propriétés papetières et du bois varient entre les génotypes d’Eucalyptus globulus

Résumé

Des disques de bois ont été prélevés à 6 hauteurs différentes dans 248 arbres représentant 10 provenances et 116 familles d’un dispositif de provenance-descendance d’E. globulus. La partie inférieure des troncs présente les propriétés du bois les moins bonnes pour la pâte Kraft et la plupart des utilisations du bois massif : l’écorce est plus épaisse, l’infradensité plus faible tandis que le lino, la dégradation biologique et les retraits sont plus importants jusqu’ à 12 % de la hauteur des tiges. Des différences génétiques significatives ont été établies au niveau provenance pour le diamètre, l’épaisseur d’écorce, l’infradensité et la dégradation biologique et au niveau famille dans une provenance pour l’infradensité et la dégradation biologique. Cependant, pour ces propriétés, les interactions provenance par catégorie de hauteur, pour l’épaisseur d’écorce, l’infradensité, la dégradation biologique et le retrait total, indiquent que les différences entre provenances dépendent de la hauteur. L’analyse des variations longitudinales fait apparaître que la longueur de la bille de pied ayant une écorce plus épaisse est plus importante pour les provenances présentant des écorces épaisses et que les provenances de sud de la Tasmanie pourraient être moins efficaces que les autres pour limiter la diffusion des pourritures après infection.

propriétés du bois variation longitudinale variation intra arbre variation génétique Eucalyptus globulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Apiolaza L.A., Raymond C.A., Yeo B.J., Genetic variation of physical and chemical wood properties of Eucalyptus globulus, Silvae Genet. 54 (2005) 160–166.Google Scholar
  2. [2]
    AS 2082, Timber-Hardwood-Visually stress graded for structural purposes, Standards Australia, Homebush, NSW, 2000.Google Scholar
  3. [3]
    AS 2796.2, Timber-Hardwood-Sawn and milled products. Part 2: Grade description, Standards Australia, Homebush, NSW, 2006.Google Scholar
  4. [4]
    AS/NZS 2269, Plywood-Structural, Joint publication of Standards Australia, Homebush, NSW and Standards New Zealand, Wellington, NZ, 2004.Google Scholar
  5. [5]
    AS/NZS 2878, Timber-Classification into strength groups, Joint publication of Standards Australia, Homebush, NSW and Standards New Zealand, Wellington, NZ, 2000.Google Scholar
  6. [6]
    Avery T.E., Burkhart H.E., Forest measurements, McGraw-Hill, New York, 1994.Google Scholar
  7. [7]
    Bootle K.R., Wood in Australia: types, properties, uses, McGraw-Hill, Sydney, 1983.Google Scholar
  8. [8]
    Borralho N.M.G., Cotterill P.P., Kanowski P.J., Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures, Can. J. For. Res. 23 (1993) 648–656.CrossRefGoogle Scholar
  9. [9]
    Brooker M.I.H., A new classification of the genus Eucalyptus L’Her. (Myrtaceae), Aust. Syst. Bot. 13 (2000) 79–148.CrossRefGoogle Scholar
  10. [10]
    Chafe S.C., Collapse: an introduction, CSIRO, Division of Forest Products, Melbourne, 1992.Google Scholar
  11. [11]
    Dutkowski G.W., Potts B.M., Geographic patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification, Aust. J. Bot. 47 (1999) 237–263.CrossRefGoogle Scholar
  12. [12]
    Eyles A., Mohammed C., Kino vein formation in Eucalyptus globulus and E. nitens, Aust. For. 66 (2003) 206–212.Google Scholar
  13. [13]
    Gilmour A.R., Gogel B.J., Cullis B.R., Welham S.J., Thompson R., ASReml User Guide Release 1.0, VSN International Ltd., Hemel Hempstead, UK, 2002.Google Scholar
  14. [14]
    Greaves B.L., Borralho N.M.G., Raymond C.A., Breeding objective for plantation eucalypts grown for production of kraft pulp, For. Sci. 43 (1997) 465–472.Google Scholar
  15. [15]
    Greaves B.L., Hamilton M., Pilbeam D., Dutkowski G., Genetic variation in commercial properties of six and fifteen year-old Eucalyptus globulus, in: Borralho N., Pereira J.S., Marques C., Coutinho J., Madeira M., Tomé M. (Eds.), Eucalyptus in a changing world, Proceedings of an IUFRO conference, RAIZ, Aveiro, Portugal, 2004, pp. 97–102.Google Scholar
  16. [16]
    Guimaraes M.P., Almeida M.H., Tome M., Pereira H., Variation in tree taper and DBH relationships among provenances of Eucalyptus globulus, in: Potts B.M., Borralho N.M.G., Reid J.B., Cromer R.N., Tibbits W.N., Raymond C.A. (Eds.), Eucalypt plantations: Improving fibre yield and quality, Cooperative Research Centre for Temperate Hardwood Forestry, Hobart, Tasmania, 1995, pp. 371–372.Google Scholar
  17. [17]
    Lopez G.A., Potts B.M., Dutkowski G.W., Traverso J.M.R., Quantitative genetics of Eucalyptus globulus: Affinities of land race and native stand localities, Silvae Genet. 50 (2001) 244–252.Google Scholar
  18. [18]
    MacDonald A.C., Borralho N.M.G., Potts B.M., Genetic variation for growth and wood density in Eucalyptus globulus spp. globulus in Tasmania (Australia), Silvae Genet. 46 (1997) 236–241.Google Scholar
  19. [19]
    McKinley R.B., Shelbourne C.J.A., Low C.B., Penellum B., Kimberley M.O., Wood properties of young Eucalyptus nitens, E. globulus, and E. maidenii in Northland, New Zealand, N. Z. J. For. Sci. 32 (2002) 334–356.Google Scholar
  20. [20]
    Muneri A., Raymond C.A., Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus, For. Genet. 7 (2000) 317–328.Google Scholar
  21. [21]
    Newnham R.M., A variable-form taper function, Petawawa National Forestry Institute, Chalk River, Ontario, 1988.Google Scholar
  22. [22]
    Nolan G., Innes T., Redman A., McGavin R., Australian hardwood drying best practice manual: Part 2, Forest and Wood Products Research and Development Corporation, Melbourne, Victoria, 2003.Google Scholar
  23. [23]
    Nolan G., Washusen R., Jennings S., Greaves B., Parsons M., Eucalypt plantations for solid wood products in Australia — A review, Forest and Wood Products Research and Development Corporation, Melbourne, Victoria, 2005.Google Scholar
  24. [24]
    Pillsbury N.H., Standiford R.B., Costello L.R., Rhoades T., Regan P., Wood volume equations for central coast blue gum, California Agriculture (Berkeley) 43 (1989) 13–14.Google Scholar
  25. [25]
    Pinkard E.A., Mohammed C., Beadle C.L., Hall M.R., Worledge D., Mollon A., Growth responses, physiology and decay associated with pruning plantation-grown Eucalyptus globulus Labill. and E. nitens (Deane and Maiden) Maiden, For. Ecol. Manage. 200 (2004) 263–277.CrossRefGoogle Scholar
  26. [26]
    Poke F.S., Potts B.M., Vaillancourt R.E., Raymond C.A., Genetic parameters for lignin, extractives and decay in Eucalyptus globulus, Ann. For. Sci. 63 (2006) 813–821.CrossRefGoogle Scholar
  27. [27]
    Potts B., Vaillancourt R.E., Jordan G., Dutkowski G.W., da Costa e Silva J., McKinnon G.E., Steane D.A., Volker P., Lopez G.A., Apiolaza L., Li Y., Marques C., Borralho N., Exploration of the Eucalyptus globulus gene pool, in: Borralho N., Pereira J.S., Marques C., Coutinho J., Madeira M., Tomé M. (Eds.), Eucalyptus in a changing world, Proceedings of an IUFRO conference, RAIZ, Aveiro, Portugal, 2004, pp. 46–61.Google Scholar
  28. [28]
    Quilho T., Pereira H., Within and between-tree variation of bark content and wood density of Eucalyptus globulus in commercial plantations, IAWA J. 22 (2001) 255–265.Google Scholar
  29. [29]
    Raymond C.A., Tree breeding issues for solid wood production, The Future of Eucalypts for Wood Products, Proceedings of an IUFRO Conference, Forest Industries Association of Tasmania, Launceston, Tasmania, 2000, pp. 310–316.Google Scholar
  30. [30]
    Raymond C.A., Muneri A., Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. I. Basic density, Wood Sci. Technol. 35 (2001) 27–39.CrossRefGoogle Scholar
  31. [31]
    Raymond C.A., Savage L., Harwood C., Longitudinal patterns of volumetric shrinkage and collapse in Eucalyptus globulus and E. nitens, in: Borralho N., Pereira J.S., Marques C., Coutinho J. Madeira M., Tomé M. (Eds.), Eucalyptus in a changing world, Proceedings of an IUFRO conference, RAIZ, Aveiro, Portugal, 2004, 701 p.Google Scholar
  32. [32]
    Self S.G., Liang K.Y., Asymptotic properties of maximum-likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Am. Stat. Assoc. 82 (1987) 605–610.CrossRefGoogle Scholar
  33. [33]
    Shield E.D., Plantation grown eucalypts: utilisation for lumber and rotary veneers — primary conversion, Anais do Seminario Internacional de Utilizacao da Madeira de Eucalipto para Serraria, Instituto de Pesquisas e Estudos Florestais (IPEF), Sao Paulo, Brazil, 1995, pp. 133–139.Google Scholar
  34. [34]
    Svensson S., Martensson A., Simulation of drying stresses in wood. Part I: comparison between one- and two-dimensional models, Holz Roh-Werkst. 57 (1999) 129–136.CrossRefGoogle Scholar
  35. [35]
    TAPPI, Basic density and moisture content of pulpwood, TAPPI, South Norcross, Georgia, 1989.Google Scholar
  36. [36]
    Wardlaw T.J., Mohammed C., Barry K., Eyles A., Wiseman D., Beadle C., Battaglia M., Pinkard E., Kube P., Interdisciplinary approach to the study and management of stem defect in eucalypts, N. Z. J. For. Sci. 33 (2003) 385–398.Google Scholar
  37. [37]
    Wardlaw T.J., Plumpton B.S., Walsh A.M., Hickey J.E., Comparison of sawn timber recovery and defect levels in Eucalyptus regnans and E. globulus from thinned and unthinned stands at Baits Road, Tasman Peninsula, Tasforests 15 (2004) 99–109.Google Scholar
  38. [38]
    Washusen R., Processing pruned and unpruned Eucalyptus globulus managed for sawlog production to produce high value products, Australian Government, Forest and Wood Products Research and Development Corporation, Melbourne, Victoria, 2004.Google Scholar
  39. [39]
    Washusen R., Blakemore P., Northway R., Vinden P., Waugh G., Recovery of dried appearance grade timber from Eucalyptus globulus Labill. grown in plantations in medium rainfall areas of the southern Murray-Darling Basin, Aust. For. 63 (2000) 277–283.Google Scholar
  40. [40]
    Washusen R., Waugh G., Hudson I., Vinden P., Appearance product potential of plantation hardwoods from medium rainfall areas of the southern Murray-Darling Basin. Green product recovery, Aust. For. 63 (2000) 66–71.Google Scholar
  41. [41]
    Washusen R., Ades P., Vinden P., Tension wood occurrence in Eucalyptus globulus Labill. I. The spatial distribution of tension wood in one 11-year-old tree, Aust. For. 65 (2002) 120–126.Google Scholar
  42. [42]
    Yang J.L., Waugh G., Potential of plantation-grown eucalypts for structural sawn products. I. Eucalyptus globulus Labill. ssp. globulus, Aust. For. 59 (1996) 90–98.Google Scholar
  43. [43]
    Yang J.L., Fife D., Waugh G., Downes G., Blackwell P., The effect of growth strain and other defects on the sawn timber quality of 10-year-old Eucalyptus globulus Labill., Aust. For. 65 (2002) 31–37.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Matthew G. Hamilton
    • 1
    Email author
  • Bruce L. Greaves
    • 1
  • Brad M. Potts
    • 1
  • Gregory W. Dutkowski
    • 2
  1. 1.School of Plant Science and Cooperative Research Centre for ForestryUniversity of TasmaniaHobartAustralia
  2. 2.PlantPlan Genetics Pty LtdHobartAustralia

Personalised recommendations