Annals of Forest Science

, Volume 64, Issue 8, pp 855–864 | Cite as

Toward a Pinus pinaster bacterial artificial chromosome library

  • Rocío Bautista
  • David P. Villalobos
  • Sara Díaz-Moreno
  • Francisco R. Cantón
  • Francisco M. Cánovas
  • M. Gonzalo Claros
Original Article


Conifers are of great economic and ecological importance, but little is known concerning their genomic organization. This study is an attempt to obtain high-quality high-molecular-weight DNA from Pinus pinaster cotyledons and the construction of a pine BAC library. The preparation incorporates modifications like low centrifugation speeds, increase of EDTA concentration for plug maintenance, use of DNase inhibitors to reduce DNA degradation, use of polyvinylpyrrolidone and ascorbate to avoid secondary metabolites, and a brief electrophoresis of the plugs prior to their use. A total of 72 192 clones with an average insert size of 107 kb, which represents an equivalent of 11X pine haploid genomes, were obtained. The proportions of clones lacking inserts or containing chloroplast DNA are both approximately 1.6%. The library was screened with cDNA probes for seven genes, and two clones containing Fd-GOGAT sequences were found, one of them seemingly functional. Ongoing projects aimed at constructing a pine bacterial artificial chromosome library may benefit from the methods described here.

BAC library glutamate synthase high molecular weight DNA pine 

Construction d’une banque BAC pour le pin maritime (Pinus pinaster)


Les conifères présentent un intérêt économique et écologique de premier plan mais restent très mal connus du point de vue de l’organisation de leur génome. Cette étude présente une tentative réussie de construction d’une banque BAC de séquences d’ADN de haute qualité et de poids moléculaire élevé à partir de cotylédons de Pinus pinaster. Le protocole de préparation se base sur des ajustements comme une baisse de la vitesse de centrifugation, une augmentation des concentrations d’EDTA dans les culots, l’utilisation d’inhibiteurs des ADNases pour limiter la dégradation de l’ADN, l’utilisation de polyvinylpyrrolidone et d’ascorbate pour éliminer les métabolites secondaires, et de brèves électrophorèses des culots. Un total de 72 192 clones a été obtenu, d’une dimension moyenne d’inserts de 107 kb et représentant l’équivalent de 11X du génome haploïde de pin. La proportion de clones dépourvus d’inserts ou contenant de l’ADN chloroplastique était de 1.6%. La banque a été testée avec des ADN complémentaires de 7 gènes, et deux clones contenant la séquence de la Fd-GOGAT ont été détectés. Des projets visant à construire une banque bactérienne artificielle (BAC) de chromosome de pin tireront bénéfice de l’utilisation de cette méthode.

banque BAC glutamate synthase brins d’ADN à fort poids moléculaire pin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allouis S., Moore G., Bellec A., Sharp R., Faivre Rampant P., Mortimer K., Pateyron S., Foote T.N., Griffiths S., Caboche M., Chalhoub B., Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’, Cereal Res. Commun. 31 (2003) 331–338.Google Scholar
  2. [2]
    Avila C., Marquez A.J., Pajuelo P., Cannell M.E., Wallsgrove R.M., Forde B.G., Cloning and sequence analysis of a cDNA for barley ferredoxin-dependent glutamate synthase and molecular analysis of photorespiratory mutants deficient in the enzyme, Planta 189 (1993) 475–483.PubMedCrossRefGoogle Scholar
  3. [3]
    Avila C., Munoz-Chápuli R., Plomion C., Frigerio J.M., Cánovas F.M., Two genes encoding distinct cytosolic glutamine synthetases are closely linked in the pine genome, FEBS Lett. 477 (2000) 237–243.CrossRefGoogle Scholar
  4. [4]
    Avila C., Suarez M.F., Gomez-Maldonado J., Canovas F.M., Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development, Plant J. 25 (2001) 93–102.PubMedCrossRefGoogle Scholar
  5. [5]
    Bajorath J., Raghunathan S., Hinrichs W., Saenger W., Long-range structural changes in proteinase K triggered by calcium ion removal, Nature 337 (1989) 481–484.PubMedCrossRefGoogle Scholar
  6. [6]
    Boerjan W., Biotechnology and the domestication of forest trees, Curr. Opin. Biotechnol. 16 (2005) 159–166.PubMedCrossRefGoogle Scholar
  7. [7]
    Canton F.R., García-Gutierrez A., Gallardo F., Vicente A. de, Cánovas F.M., Molecular characterization of a cDNA clone encoding glutamine synthetase from a gymnosperm, Pinus sylvestris, Plant Mol. Biol. 22 (1993) 819–828.PubMedCrossRefGoogle Scholar
  8. [8]
    Canton F.R., Suarez M.F., Jose-Estanyol M., Canovas F.M., Expression analysis of a cytosolic glutamine synthetase gene in cotyledons of Scots pine seedlings: developmental, light regulation and spatial distribution of specific transcripts, Plant Mol. Biol. 40 (1999) 623–634.PubMedCrossRefGoogle Scholar
  9. [9]
    Chalhoub B., Caboche M., Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol. J. 2 (2004) 181–188.PubMedCrossRefGoogle Scholar
  10. [10]
    Claros M.G., Cánovas F.M., Rapid high quality RNA preparation from pine seedlings, Plant Mol. Biol. Rep. 16 (1998) 9–18.CrossRefGoogle Scholar
  11. [11]
    Frijters A.C.J., Zhang Z., vanDamme M., Wang G.L., Ronald P.C., Michelmore R.W., Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce, Theor. Appl. Genet. 94 (1997) 390–399.CrossRefGoogle Scholar
  12. [12]
    Fu H.H., Dooner H.K., A gene-enriched BAC library for cloning large allele-specific fragments from maize: Isolation of a 240-kb contig of the bronze region, Genome Res. 10 (2000) 866–873.PubMedCrossRefGoogle Scholar
  13. [13]
    García-Gutiérrez Á., Cantón F.R., Gallardo F., Sánchez-Jiménez F., Cánovas F.M., Expression of ferredoxin-dependent glutamate synthase in dark-grown pine seedlings, Plant Mol. Biol. 27 (1995) 115–128.PubMedCrossRefGoogle Scholar
  14. [14]
    García-Gutiérrez A., Dubois F., Canton F.R., Gallardo F., Sangwan R.S., Canovas F.M., Two different modes of early development and nitrogen assimilation in gymnosperm seedlings, Plant J. 13 (1998) 187–199.CrossRefGoogle Scholar
  15. [15]
    Gómez-Maldonado J., Crespillo R., Avila C., Cánovas F.M., Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis, Plant Mol. Biol. Rep. 19 (2001) 361–366.CrossRefGoogle Scholar
  16. [16]
    Hipkins V.D., Marshall K.A., Neale D.B., Rottmann W.H., Strauss S.H., A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene, Curr. Genet. 27 (1995) 572–579.PubMedCrossRefGoogle Scholar
  17. [17]
    Hizume M., Shibata F., Matsusaki Y., Garajova Z., Chromosome identification and comparative karyotypic analyses of four Pinus species, Theor. Appl. Genet. 105 (2002) 491–497.PubMedCrossRefGoogle Scholar
  18. [18]
    Isidore E., Scherrer B., Bellec A., Budin K., Faivre-Rampant P., Waugh R., Keller B., Caboche M., Feuillet C., Chalhoub B., Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region, Funct. Integr. Genomics 5 (2005) 97–103.CrossRefGoogle Scholar
  19. [19]
    Islam-Faridi N., Chang Y.-L., Zhang H., Kinlaw C., Doudrick R.L., Neale D.B., Echt C., Price H.J., Stelly D.M., in: Plant & Animal Genome VI Conference, San Diego, USA, 1998.Google Scholar
  20. [20]
    Janda J., Safar J., Kubalakova M., Bartos J., Kovarova P., Suchankova P., Pateyron S., Cihalikova J., Sourdille P., Simkova H., Faivre-Rampant P., Hribova E., Bernard M., Lukaszewski A., Dolezel J., Chalhoub B., Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B, Plant J, 47 (2006) 977–986.PubMedCrossRefGoogle Scholar
  21. [21]
    Katari M.S., Balija V., Wilson R.K., Martienssen R.A., McCombie W.R., Comparing low coverage random shotgun sequence data from Brassica oleracea and Oryza sativa genome sequence for their ability to add to the annotation of Arabidopsis thaliana, Genome Res. 15 (2005) 496–504.PubMedCrossRefGoogle Scholar
  22. [22]
    Kim C.S., Lee C.H., Shin J.S., Chung Y.S., Hyung N.I., A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP, Nucl. Acids Res. 25 (1997) 1085–1086.PubMedCrossRefGoogle Scholar
  23. [23]
    Kinlaw C.S., Neale D.B., Complex gene families in pine genomes, Trends Plant Sci. 2 (1997) 356–359.CrossRefGoogle Scholar
  24. [24]
    Lev-Yadun S., Sederoff R., Pines as model gymnosperms to study evolution, wood formation, and perennial growth, J. Plant Growth Regul. 19 (2000) 290–305.CrossRefGoogle Scholar
  25. [25]
    Lijavetzky D., Muzzi G., Wicker T., Keller B., Wing R., Dubcovsky J., Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat, Genome 42 (1999) 1176–1182.PubMedCrossRefGoogle Scholar
  26. [26]
    Liu D., Wu R., Protection of Megabase-Sized Chromosomal DNA from Breakage by DNase Activity in Plant Nuclei, BioTechniques 26 (1999) 258–261.PubMedGoogle Scholar
  27. [27]
    Luo M., Wang Y.-H., Frisch D., Joobeur T., Wing R.A., Dean R.A., Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2), Genome 44 (2001) 154–162.PubMedGoogle Scholar
  28. [28]
    Luro F., Laigret F., Preparation of high molecular weight genomic dna from nuclei of woody plants, BioTechniques 19 (1995) 388–391.PubMedGoogle Scholar
  29. [29]
    Peterson D.G., Tomkins J.P., Fritsch D.A., Wing R.A., Paterson A.H., Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide, J. Agric. Genomics 5 (2000) Scholar
  30. [30]
    Peterson D.G., Wessler S.R., Paterson A.H., Efficient capture of unique sequences from eukaryotic genomes, Trends Genet. 18 (2002) 547–550.PubMedCrossRefGoogle Scholar
  31. [31]
    Plomion C., Hurme P., Frigerio J.M., Ridolfi M., Pot D., Pionneau C., Avila C., Gallardo F., David H., Neutlings G., Campbell M., Canovas F.M., Savolainen O., Bodénès C., Kremer A., Developing SSCP markers in two Pinus species, Mol. Breed. 5 (1999) 21–31.CrossRefGoogle Scholar
  32. [32]
    Rabinowicz P.D., Constructing gene-enriched plant genomic libraries using methylation filtration technology, Methods Mol. Biol. 236 (2003) 21–36.PubMedGoogle Scholar
  33. [33]
    Rabinowicz P.D., Citek R., Budiman M.A., Nunberg A., Bedell J.A., Lakey N., O’Shaughnessy A.L., Nascimento L.U., McCombie W.R., Martienssen R.A., Differential methylation of genes and repeats in land plants, Genome Res. 15 (2005) 1431–1440.PubMedCrossRefGoogle Scholar
  34. [34]
    Sambrook J., Russell D.W., Molecular Cloning, CSHL Press, Cold Spring Harbour, 2001.Google Scholar
  35. [35]
    Schmidt T., Heslop-Harrison J.S., Genomes, genes and junk: the large-scale organization of plant chromosomes, Trends Plant Sci. 3 (1998) 195–198.CrossRefGoogle Scholar
  36. [36]
    She K., So you want to work with giants: the BAC vector, BioTech. J. 1 (2003) 69–74.Google Scholar
  37. [37]
    Shizuya H., Birren B., Kim U.J., Mancino V., Slepak T., Tachiiri Y., Simon M., Cloning and stable maintenance of 300-kb pair fragments of human DNA in Escherichia coli using a F-factor-based vector, Proc. Natl. Acad. Sci. USA 89 (1992) 8794–8797.PubMedCrossRefGoogle Scholar
  38. [38]
    Sinnett D., Richer C., Baccichet A., Isolation of Stable Bacterial Artificial Chromosome DNA Using a Modified Alkaline Lysis Method, BioTechniques 24 (1998) 752–754.PubMedGoogle Scholar
  39. [39]
    Vanhouten W., MacKenzie S., Construction and characterization of a common bean bacterial artificial chromosome library, Plant Mol. Biol. 40 (1999) 977–983.PubMedCrossRefGoogle Scholar
  40. [40]
    Villalobos D.P., Bautista R., Cánovas F.M., Claros M.G., Isolation of Bacteria Artificial Chromosome DNA by means of improved alkaline lysis and double potassium acetate precipitation, Plant Mol. Biol. Rep. 22 (2004) 419–425.CrossRefGoogle Scholar
  41. [41]
    Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T., Sugiura M., Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii, Proc. Natl. Acad. Sci. USA 91 (1994) 9794–9798.PubMedCrossRefGoogle Scholar
  42. [42]
    Weber A., Flügge U.I., Interaction of cytosolic and plastidic nitrogen metabolism in plants, J. Exp. Bot. 53 (2002) 865–874.PubMedCrossRefGoogle Scholar
  43. [43]
    Yüksel B., Paterson A.H., Construction and characterization of a peanut Hindlll BAC library, Theor. Appl. Genet. 111 (2005) 630–639.PubMedCrossRefGoogle Scholar
  44. [44]
    Zhang H.-B., Zhao X., Ding X., Paterson A.H., Wing R.A., Preparation of megabase-size DNA from plant nuclei, Plant J. 7 (1995) 175–184.CrossRefGoogle Scholar
  45. [45]
    Zhang H.B., Wu C.C., BAC as tools for genome sequencing, Plant Physiol. Biochem. 39 (2001) 195–209.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Rocío Bautista
    • 1
  • David P. Villalobos
    • 1
  • Sara Díaz-Moreno
    • 1
  • Francisco R. Cantón
    • 1
  • Francisco M. Cánovas
    • 1
  • M. Gonzalo Claros
    • 1
  1. 1.Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias & Institute Andaluz de BiotecnologíaUniversidad de MálagaMálagaSpain

Personalised recommendations