Annals of Forest Science

, Volume 64, Issue 7, pp 733–742 | Cite as

Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain)

  • José Ramón GonzálezEmail author
  • Antoni Trasobares
  • Marc Palahí
  • Timo Pukkala
Original Article


The study developed models for predicting the post-fire tree survival in Catalonia. The models are appropriate for forest planning purposes. Two types of models were developed: a stand-level model to predict the degree of damage caused by a forest fire, and tree-level models to predict the probability of a tree to survive a forest fire. The models were based on forest inventory and fire data. The inventory data on forest stands were obtained from the second (1989–1990) and third (2000–2001) Spanish national forest inventories, and the fire data consisted of the perimeters of forest fires larger than 20 ha that occurred in Catalonia between the 2nd and 3rd measurement of the inventory plots. The models were based on easily measurable forest characteristics, and they permit the forest manager to predict the effect of stand structure and species composition on the expected damage. According to the stand level fire damage model, the relative damage decreases when the stand basal area or mean tree diameter increases. Conversely, the relative stand damage increases when there is a large variation in tree size, when the stand is located on a steep slope, and when it is dominated by pine. According to the tree level survival models, trees in stands with a high basal area, a large mean tree size and a small variability in tree diameters have a high survival probability. Large trees in dominant positions have the highest probability of surviving a fire. Another result of the study is the exceptionally good post-fire survival ability of Pinus pinea and Quercus suber.

damage model fire management logistic function tree mortality survival model 

Prédiction des dommages au peuplement et de la survie des arbres dans les forêts brûlées en Catalogne


L’étude développe des modèles pour prédire la survie des arbres après feu en Catalogne. Les modèles sont appropriés à des objectifs de planification en forêt. Deux types de modèles ont été développés : un modèle au niveau des peuplements pour prédire le niveau des dommages causés par les feux de forêts, et des modèles arbre-centrés pour prédire la probabilité de survie à un feu de forêt. Les modèles sont basés sur les données de l’inventaire des forêts et des feux. Les données de l’inventaire des peuplements forestiers ont été obtenues à partir du deuxième (1989–1990) et du troisième (2000–2001) inventaire forestier espagnol, et les données sur les feux proviennent de périmètres de feux de forêts supérieurs à 20 ha qui se sont produits en Catalogne entre les deuxièmes et troisièmes mesures dans les placettes d’inventaire. Les modèles sont basés sur des caractéristiques facilement mesurables, et permettent au praticien forestier de prédire l’effet de la structure du peuplement et de la composition en espèces sur les dégâts. D’après le modèle de dommage au niveau peuplement, les dégâts diminuent lorsque la surface terrière ou le diamètre moyen des arbres augmente. Inversement, les dégãts augmentent en cas de forte variabilité de dimension des arbres, quand le peuplement est localisé sur une pente forte ou quand il est principalement composé de pins. Selon les modèles de survie arbre-centrés, les arbres de peuplements à forte surface terrière, forte dimension moyenne des arbres et faible variabilité des diamètres, présente la plus forte probabilité de survie au feu. Les grands arbres dominants présentent la plus forte probabilité de survivre au feu. Un autre résultat de cette étude est l’exceptionnelle capacité de survie après feu de Pinus pinea et Quercus suber.

modèle de dommage gestion du feu fonction logistique mortalité des arbres modèle de survie 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agee J.K., Fire ecology of Pacific Northwest forests, Island Press, Washington, DC, USA, 1993, 493 p.Google Scholar
  2. [2]
    Agee J.K., Skinner C.N., Basic principles of forest fuel reduction treatments, For. Ecol. Manage. 211 (2005) 83–96.CrossRefGoogle Scholar
  3. [3]
    Alexandrian D., Esnault F., Calabri G., Forest fires in the Mediterranean area, Unasylva 197 (2000) 35–41.Google Scholar
  4. [4]
    ArcGIS 9.0., ESRI, 2004.Google Scholar
  5. [5]
    Beverly J.L., Martell D.L., Modeling Pinus strobus mortality following prescribed fire in Quetico Provincial Park, northwestern Ontario, Can. J. For. Res. 33 (2003) 740–751.CrossRefGoogle Scholar
  6. [6]
    Bond W.J., Van Wilgen B.W., Why and how do ecosystems burn? Fire and Plants, Chapman & Hall, New York, 1996, pp. 17–33.Google Scholar
  7. [7]
    Brown J.K., DeByle N.V., Fire damage, mortality, and suckering in aspen, Can. J. For. Res. 17 (1987) 1100–1109.CrossRefGoogle Scholar
  8. [8]
    DGCN, Tercer Inventario Forestal Nacional (1997–2007) Cataluna: Barcelona, Ministerio de Medio Ambiente, Madrid, 2005.Google Scholar
  9. [9]
    Finney M.A., Modeling the spread and behaviour of prescribed natural fires, Proc. 12th Conf. Fire and Forest Meteorology, 1994, pp. 138–143.Google Scholar
  10. [10]
    Finney M.A., Mechanistic modeling of landscape fire patterns, in: Mladenoff D.J., Baker W.L., (Eds.), Spatial modeling of forest landscape change: approaches and applications, Cambridge University Press, Cambridge, UK, 1999, pp. 186–209.Google Scholar
  11. [11]
    Fowler J.F., Sieg C.H., Postfire mortality of ponderosa pine and Douglas-fir: A review of methods to predict tree death, Gen. Tech. Rep. RMRS-GTR-132. Fort Collins, CO, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2004, 25 p.Google Scholar
  12. [12]
    Gadow K.v., Evaluating risk in forest planning models, Silva Fenn. 34 (2000) 181–191.Google Scholar
  13. [13]
    González J.R., Pukkala T., Palahí M., Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain), Ann. For. Sci. 62 (2005) 493–501CrossRefGoogle Scholar
  14. [14]
    González J.R., Palahí M., Pukkala T., Integrating fire risk considerations in forest management planning — a landscape level perspective, Landsc. Ecol. 20 (2005) 975–970.CrossRefGoogle Scholar
  15. [15]
    González J.R., Palahí M., Trasobares A., Pukkala T., A fire risk model for forest stands in Catalonia (north-east of Spain), Ann. For. Sci. 63 (2006) 169–176.CrossRefGoogle Scholar
  16. [16]
    Guinto D.F., House A.P.N., Xu Z.H., Saffigna P.G., Impacts of repeated fuel reduction burning on tree growth, mortality and recruitment in mixed species eucalypt forests of southeast Queensland, For. Ecol. Manage. 115 (1999) (1): 13–27.CrossRefGoogle Scholar
  17. [17]
    He H.S., Mladenoff D.J., Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession, Ecology 80 (1999) 81–99.CrossRefGoogle Scholar
  18. [18]
    Hély C., Flannigan M., Bergeron Y., Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest, For. Sci. 49 (2003) 566–576.Google Scholar
  19. [19]
    Hosmer D.W., Lemeshow S., Applied logistic regression, 2nd ed., Wiley Series in Probability and Mathematical Statistics, New York, 2000, 307 p.CrossRefGoogle Scholar
  20. [20]
    ICONA, Segundo Inventario Forestal Nacional (1986–1995), Cataluna: Barcelona, Madrid, 1993.Google Scholar
  21. [21]
    Jalkanen A., Mattila U., Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data, For. Ecol. Manage. 135 (2000) 315–330.CrossRefGoogle Scholar
  22. [22]
    Linder P., Jonsson P., Niklasson M., Tree mortality after prescribed burning in an old-growth Scots pine forest in Northern Sweden, Silva Fenn. 32 (1998) 339–349.Google Scholar
  23. [23]
    Martin R.E., Fire history and its role in succession. in: Means J.E. (Ed.), Forest succession and stand development research in the Northwest: Proceedings of a Symposium, USDA Forest Service Forest Research Laboratory, Oregon State University, Corvallis, Oregon, 1982, pp. 92–98.Google Scholar
  24. [24]
    McHugh C.V., Kolb T.E., Ponderosa pine mortality following fire in northern Arizona, Int. J. Wildl Fire, 12 (2003) 7–22.CrossRefGoogle Scholar
  25. [25]
    Mutch L.S., Parsons D., Mixed conifer forest mortality and establishment before and after prescribed fire in Sequoia National Park, California, For. Sci. 44 (1998) 341–355.Google Scholar
  26. [26]
    Ordóñez J.L., Retana J., Espeita J.M., Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees, For. Ecol. Manage. 206 (2005) 109–117.CrossRefGoogle Scholar
  27. [27]
    Outcalt K.W., Wade D.D., Fuels management reduces tree mortality from wildfires in southeastern United States, J. Appl. For. 28 (2004) 28–34.Google Scholar
  28. [28]
    Pausas J.G., Resprouting of Quercus suber in NE Spain after fire, J. Veg. Sci. 8 (1997) 703–706.CrossRefGoogle Scholar
  29. [29]
    Peterson D.L., Arbaugh M.J., Estimating postfire survival of Douglas-fir in the Cascade Range, Can. J. For. 19 (1989) 530–533.Google Scholar
  30. [30]
    Peterson D.L., Johnson M.C., Agee J.K., Jain T.B., McKenzie D., Reinhard E.D., Forest structure and fire hazard in dry forests of the Western United States, Gen. Tech. Rep. PNW-GTR-628. Portland, OR, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2005, 30 p.Google Scholar
  31. [31]
    Pollet J., Omi P.N., Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests, Int. J. Wildl. Fire 11 (2002) 1–10.CrossRefGoogle Scholar
  32. [32]
    Rigolot E., Predicting postfire mortality of Pinus halepensis Mill, and Pinus pinea L., Plant Ecol. 171 (2004) 139–151.CrossRefGoogle Scholar
  33. [33]
    Rothermel R.C., Predicting behavior and size of crown fires in the northern Rocky Mountains, USDA Forest Service, Research Paper INT-483, Ogden, Utah, 1991.Google Scholar
  34. [34]
    Ryan K.C., Reinhardt E.D., Predicting postfire mortality of seven western conifers, Can. J. For. Res. 18 (1988) 1291–1297.CrossRefGoogle Scholar
  35. [35]
    Saveland J.M., Neuenschwander L.F., A signal detection framework to evaluate models of tree mortality following fire damage, For. Sci. 36 (1990) 66–76.Google Scholar
  36. [36]
    SPSS Inc., SPSS Base system syntax reference Guide, Release 9.0, 1999.Google Scholar
  37. [37]
    Tucker C.J., Vanpraet C., Sharman M.J., Vanfnttersum G., Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984, Remote Sens. Environ. 17 (1985) 233–249.CrossRefGoogle Scholar
  38. [38]
    Van Mantgem P.J., Stephenson N.L., Mutch L.S., Johnson V.G., Esperanza A.M., Parsons D.J., Growth rate predicts mortality of Abies concolor in both burned and unburned stands, Can. J. For. Res. 33 (2003) 1029–1038.CrossRefGoogle Scholar
  39. [39]
    Van Wagner C.E., Conditions for the start and spread of crown fire, Can. J. For. Res. 7 (1977) 23–34.CrossRefGoogle Scholar
  40. [40]
    Velez R., Mediterranean forest fires: A regional perspective, Unasylva 162 (1990) 10–12.Google Scholar
  41. [41]
    Weatherspoon C.P., Skinner C.N., An assessment of factors associated with damage to tree crowns from the 1987 wildfires in northern California, For. Sci. 41 (1995) 430–451.Google Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • José Ramón González
    • 1
    Email author
  • Antoni Trasobares
    • 2
  • Marc Palahí
    • 1
  • Timo Pukkala
    • 2
  1. 1.Centre Tecnològic Forestal de CatalunyaSolsonaSpain
  2. 2.ForEcoTechnologiesBarcelonaSpain

Personalised recommendations