Advertisement

Annals of Forest Science

, Volume 64, Issue 7, pp 679–690 | Cite as

Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents

  • Michiel J. BoonstraEmail author
  • Joris Van Acker
  • Bôke F. Tjeerdsma
  • Edo V. Kegel
Original Article

Abstract

Thermal modification at relatively high temperatures (ranging from 150 to 260 °C) is an effective method to improve the dimensional stability and resistance against fungal attack. This study was performed to investigate the impact of heat treatment on the mechanical properties of wood. An industrially-used two-stage heat treatment method under relative mild conditions (< 200 °C) was used to treat the boards. Heat treatment revealed a clear effect on the mechanical properties of softwood species. The tensile strength parallel to the grain showed a rather large decrease, whereas the compressive strength parallel to the fibre increased after heat treatment. The bending strength, which is a combination of the tensile stress, compressive stress and shear stress, was lower after heat treatment. This decrease was less than the decrease of only the tensile strength. The impact strength showed a rather large decrease after heat treatment. An increase of the modulus of elasticity during the bending test has been noticed after heat treatment. Changes and/or modifications of the main wood components appear to be involved in the effects of heat treatment on the mechanical properties. The possible effect of degradation and modification of hemicelluloses, degradation and/or crystallization of amorphous cellulose, and polycondensation reactions of lignin on the mechanical properties of heat treated wood have been discussed. The effect of natural defects, such as knots, resin pockets, abnormal slope of grain and reaction wood, on the strength properties of wood appeared to be affected by heat treatment. Nevertheless, heat treated timber shows potential for use in constructions, but it is important to carefully consider the stresses that occur in a construction and some practical consequences when heat treated timber is used.

thermal modification mechanical properties cellulose hemicelluloses lignin 

Propriétés mécaniques de bois résineux modifiés par traitement thermique en relation avec la constitution en polymères ligneux structuraux

Résumé

La modification thermique du bois à des températures relativement élevées (entre 150 et 260 °C) présente une méthode efficace pour améliorer la stabilité dimensionnelle et la résistance aux attaques de champignons. Ce travail porte sur les effets du traitement thermique sur les propriétés mécaniques du bois. Les planches ont été soumises à un traitement thermique à des températures relativement modérées (< 200 °C) selon un procédé industriel en deux phases. Il s’est avéré qu’un tel traitement influe nettement sur les propriétés mécaniques des bois résineux. La résistance à la traction dans la direction parallèle au fil du bois est diminuée de manière assez importante, tandis que, dans la même direction, la résistance à la compression est augmentée. La résistance au fléchissement, qui intègre la résistance aux efforts de traction, de compression et de cisaillement, était plus réduite après le traitement thermique. Cette diminution était moins importante que celle de la résistance à la traction considérée seule. La résistance aux efforts de choc a diminué de manière importante. Les tests de flexion ont permis de constater également une augmentation du module d’élasticité à la suite du traitement thermique. Des changements et/ou des modifications au niveau des principaux composants du bois semblent être impliqués dans les effets d’un traitement thermique sur les propriétés mécaniques. Les effets potentiels de dégradation et de modification d’hémicelluloses, de dégradation et/ou de cristallisation de cellulose amorphe, et de réactions de polycondensation de lignine sur les propriétés mécaniques de bois traité thermiquement ont été discutés. Le traitement thermique influait également sur l’effet de défauts naturels, tels que nœuds, poches de résine, déviations anormales du fil du bois et bois de réaction, sur les propriétés mécaniques du bois. Le bois ayant subi un traitement thermique présente malgré tout un bon potentiel en applications en structure. Néanmoins, il reste important de prendre en compte soigneusement les efforts mécaniques ainsi que quelques implications pratiques qui jouent un rôle lors de l’utilisation de bois traité thermiquement dans une construction.

modification thermique résistance mécanique cellulose hémicelluloses lignines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Banoub J.H., Delmas M., JMS letters, J. Mass Spectrom. 38 (2003) 900–903.PubMedCrossRefGoogle Scholar
  2. [2]
    Bekhta P., Niemz P., Effect of high temperature on the change in colour, dimensional stability and mechanical properties of spruce wood, Holzforschung 57 (2003) 539–546.CrossRefGoogle Scholar
  3. [3]
    Bhuiyan M.T.R., Hirai N., Changes in crystallinity in wood cellulose by heat treatment under dried and moist conditions, J. Wood Sci. 46 (2000) 431–436.CrossRefGoogle Scholar
  4. [4]
    Bobleter O., Binder H., Dynamischer hydrothermaler Abbau von Holz, Holzforschung 34 (1980) 48–51.CrossRefGoogle Scholar
  5. [5]
    Boonstra M.J., Blomberg J., Semi-isostatic densification of heat treated radiata pine, Wood Sci. Technol. 7 (2007) DOI: 10.1007/s00226-007-0140-y.Google Scholar
  6. [6]
    Boonstra M.J., Tjeerdsma B.F., Chemical analysis of heat treated softwoods, Holz Roh.-Werkst. 64 (2006) 204–211.CrossRefGoogle Scholar
  7. [7]
    Boonstra M.J., Tjeerdsma B.F., Groeneveld H.A.C., Thermal modification of non-durable wood species. Part 1. The Plato technology: thermal modification of wood, International Research Group on Wood Preservation, Document No. IRG/WP 98-40123, 1998.Google Scholar
  8. [8]
    Boonstra M.J., Rijsdijk J.F., Sander C., Kegel E., Tjeerdsma B.F., Militz H., Van Acker J., Stevens M., Microstructural and physical aspects of heat treated wood. Part 1. Softwoods, Maderas Ciencia y tecnología 8 (2006) 193–208.CrossRefGoogle Scholar
  9. [9]
    Boonstra M.J., Van Acker J., Kegel E., The effect of a two-stage heat treatment process on the mechanical properties of full size Norway spruce posts, submitted to Wood Mat. Sci. Eng. (2007).Google Scholar
  10. [10]
    Bourgois J., Guyonnet R., Characterization and analysis of torrefied wood, Wood Sci. Technol. 22 (1988) 143–155.CrossRefGoogle Scholar
  11. [11]
    Brown H.P., Panshin A.J., Forsaith C.C., Working stresses for wood, in: Textbook of wood technology, McGraw-Hill, Book company, Inc., New York, Toronto, London, 1952, pp. 474–499.Google Scholar
  12. [12]
    Burmester A., Einfluss einer Wärme-Druck-Behandlung haldtrockenen Holzes auf seine Formbeständigkeit, Holz Roh-Werkst. 31 (1973) 237–243.CrossRefGoogle Scholar
  13. [13]
    Burmester A., Zur Dimensionsstabilisierung von Holz, Holz Roh-Werkst. 33 (1975) 333–335.CrossRefGoogle Scholar
  14. [14]
    Davis W.H., Thompson W.S., Influence of thermal treatments of short duration on the toughness and chemical composition of wood, For. Prod. J. 14 (1964) 350–356.Google Scholar
  15. [15]
    Fengel D., Wegener G., Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter and Co. Berlin, New York, 1984.Google Scholar
  16. [16]
    Garrote G., Dominguez H., Parajo J.C., Hydrothermal processing of lignocellulosic materials. Holz Roh-Werkst. 57 (1999) 191–202.CrossRefGoogle Scholar
  17. [17]
    Giebeler E., Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme/Druck-Behandlung, Holz Roh-Werkst. 41 (1983) 87–94.CrossRefGoogle Scholar
  18. [18]
    Goring D.A.I., Thermal softening of lignin, hemicelluloses and cellulose, Pulp Pap. Mag. Canada 64 (1963) T–517-527.Google Scholar
  19. [19]
    Hillis W.E., High temperature and chemical effects on wood stability. Part 1. General considerations, Wood Sci. Technol. 18 (1984) 281–293.CrossRefGoogle Scholar
  20. [20]
    Hillis W.E., Rozsa A.N., The softening temperatures of wood, Holzforschung 32 (1978) 69–73.CrossRefGoogle Scholar
  21. [21]
    Hillis W.E., Rozsa A.N., High temperature and chemical effects on wood stability. Part 2. The effect of heat on the softening of radiata pine, Wood Sci. Technol. 19 (1985) 57–66.CrossRefGoogle Scholar
  22. [22]
    Ifju G., Tensile strength behaviour as a function of cellulose in wood, For. Prod. J. 14 (1964) 366–372.Google Scholar
  23. [23]
    Kass A., Wangaard F.F., Schroeder H.A., Chemical degradation of wood: the relationship between strength retention and pentosan content, Wood fiber 2 (1970) 31–39.Google Scholar
  24. [24]
    Kollmann F.F.P., Mechanics and rheology of wood, in: Kollmann F.F.P., Coté W.A. (Eds.), Principles of wood science and technology. I. Solid wood, Springer-Verlag, Berlin, Heidelberg, New York, 1968, pp. 292–414.Google Scholar
  25. [25]
    Kollmann F., Fengel D., Änderungen der chemischen Zusamensetzung von Holz durch thermische Behandlung, Holz Roh-Werkst. 21 (1965) 77–85.CrossRefGoogle Scholar
  26. [26]
    Kollmann F., Schneider A., Uber dass Sorptionsverhalten wärmebehandelter Hölzer, Holz Roh-Werkst. 41 (1963) 87–94.Google Scholar
  27. [27]
    Košíková B., Hricovini M., Cosetino C., Interaction of lignin and polysaccharides in beech wood (Fagus sylvatica) during drying processes, Wood Sci. Technol. 33 (1999) 373–380.CrossRefGoogle Scholar
  28. [28]
    Kubojima Y., Okano T., Ohta M., Bending strength and toughness of heat treated wood, J. Wood Sci. 46 (2000) 8–15.CrossRefGoogle Scholar
  29. [29]
    LeVan S.L., Ross R.J., Winandy J.E., Effects of fire retardant chemicals on bending properties of wood at elevated temperatures, Res. Pap. FPL-RP-498, 1990.Google Scholar
  30. [30]
    Mark R.E., Cell wall mechanics of tracheids, Yale University Press, New Haven, CT, 1967.Google Scholar
  31. [31]
    McKenzie W.M.C., Design of structural timber, MacMillan Press Ltd, 2000.Google Scholar
  32. [32]
    Natterer J., Sandoz J.L., Rey M., Construction en bois. Materiau, technologie et dimensionnement, Traité de génie civil, Vol. 13, Presses polytechniques et universitaires Romandes, 2004.Google Scholar
  33. [33]
    Noack D., Uber die Heisswasserbehandlung von Rotbuchenholz im Temperaturbereich von 100 bis 180 °C, Holzforsch. Holzverwert. 21 (1969) 118–124.Google Scholar
  34. [34]
    Pizzi A., Stephanou A., Boonstra M.J., Pendlebury A.J., A new concept on the chemical modification of wood by organic anhydrides, Holzforschung 48 (Suppl.) (1994) 91–94.CrossRefGoogle Scholar
  35. [35]
    Pott G., Natural fibers with low moisture sensitivity, in: Natural fibers, plastics and composites, chapter 8, Kluwer Academic Publishers, 2004.Google Scholar
  36. [36]
    Rowell R.M., Physical and mechanical properties of chemically modified wood, in: Hon D.N.-S. (Ed.), Chemical modification of lignocellulosic materials, M. Dekker, New York, 1996, pp. 295–310.Google Scholar
  37. [37]
    Rousset P., Turner I., Donnot A., Perré P., Choix d’un modèle de pyrolyse ménagée du bois à l’échelle de la microparticule en vue de la modélisation macroscopique, Ann. For. Sci. 63 (2006) 213–229.CrossRefGoogle Scholar
  38. [38]
    Rusche H., Thermal degradation of wood at temperatures up to 200 °C. Part 1: Strength properties of dried wood after heat treatment, Holz Roh-Werkst. 31 (1973) 273–281.CrossRefGoogle Scholar
  39. [39]
    Sanderman W., Augustin H., Chemical investigations on the thermal decomposition of wood, Part I: Stand of research, Holz Roh-Werkst. 21 (1963) 256–265.CrossRefGoogle Scholar
  40. [40]
    Scheiding W., Kruse K., Plaschkies K., Weiss B., Thermally modified timber (TMT) for playground toys: Investigations on 13 industrially manufactured products, in: proc. 2nd European conference on Wood modification, Goettingen, Germany, October 2005.Google Scholar
  41. [41]
    Seborg R.M., Tarkow H., Stamm A.J., Effect of heat upon the dimensional stabilisation of wood, J. For. Prod. Res. Soc. 3 (1953) 59–67.Google Scholar
  42. [42]
    Shiraishi N., Wood plasticization, in: Hon D.N.-S., Shiraishi N. (Eds.) Wood and cellulosic chemistry, Marcel Dekker, Inc., New York, Basel, 2001, pp. 655–700.Google Scholar
  43. [43]
    Sivonen H., Maunu S.L., Sundholm F., Jamsa S., Viitaniemi P., Magnetic resonance studies of thermally modified wood, Holzforschung 56 (2002) 648–654.CrossRefGoogle Scholar
  44. [44]
    Stamm A.J., Wood and cellulose science, Ronald Press Company, USA, 1964.Google Scholar
  45. [45]
    Sweet M.S., Winandy J.E., The influence of degree of polymerisation (DP) of cellulose and hemicellulose on the strength loss of fire-retardant-treated wood, Holzforschung 53 (1999) 311–317.CrossRefGoogle Scholar
  46. [46]
    Tjeerdsma B.F., Militz H., Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood, Holz Roh-Werkst. 63 (2005) 102–111.CrossRefGoogle Scholar
  47. [47]
    Tjeerdsma B.F., Boonstra M., Militz H., Thermal modification of non-durable wood species. Part 2. Improved wood properties of thermally treated wood, International Research Group on Wood Preservation, Document No. IRG/WP 98-40124, 1998.Google Scholar
  48. [48]
    Tjeerdsma B.F., Boonstra M., Pizzi A., Tekely P., Militz H., Characterisation of thermally modified wood: molecular reasons for wood performance improvement, Holz Roh-Werkst. 56 (1998) 149–153.CrossRefGoogle Scholar
  49. [49]
    Viitaniemi P., Jämsä S., Puun modifionti lampokassittelylla (Modification of wood with heat treatment), Espoo 1996, VTT Juskaisuja-Publikationer 814, 1996.Google Scholar
  50. [50]
    Weiland J.J., Guyonnet R., Retifiziertes Holz. 16. Verdichter Holzbau in Europa. Motivation, Erfahrung, Entwicklung, in: Dreilander Holztagung. 10. Joanneum Research Fachtage, 2–5 11 1997, Grazer Congress, Grazz, Austria, 1997.Google Scholar
  51. [51]
    Whistler R.L., Chen C.-C, Hemicelluloses, in: Lewin, Goldstein (Eds.), Wood structure and composition, International fiber science and technology series, Vol. 11, Marcel Decker, Inc., New York, NY, 1991, pp. 287–320.Google Scholar
  52. [52]
    Winandy J.E., Effects of fire retardant treatments after 18 months of exposure at 150 °F (66 °C), Res. Note FPL-RN-0264, 1995.Google Scholar
  53. [53]
    Winandy J.E., Effects of treatment, incising and drying on mechanical properties of wood, Gen. Tech. Rep. FPL-GTR 94: 371–378, 1996.Google Scholar
  54. [54]
    Winandy J.E., Lebow P.K., Modelling strength loss in wood by chemical composition. Part I. An individual component model for southern pine, Wood fiber Sci. 33 (2001) 239–254.Google Scholar
  55. [55]
    Winandy J.E., Rowell R.M., The chemistry of wood strength, in: Rowell R.M. (Ed.) The Chemistry of solid wood, American Chemical Society, Washington, DC, 1984, pp. 211–256.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Michiel J. Boonstra
    • 1
    Email author
  • Joris Van Acker
    • 2
  • Bôke F. Tjeerdsma
    • 3
  • Edo V. Kegel
    • 1
  1. 1.Plato International BVCD ArnhemThe Netherlands
  2. 2.Laboratory of Wood TechnologyGhent UniversityGhentBelgium
  3. 3.SHR Hout ResearchAL WageningenThe Netherlands

Personalised recommendations