Annals of Forest Science

, Volume 64, Issue 6, pp 657–664 | Cite as

Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis

  • Jochen Schöngart
  • Florian Wittmann
  • Martin Worbes
  • Maria Teresa Fernandez Piedade
  • Hans-Jürgen Krambeck
  • Wolfgang Johannes Junk
Original Article

Abstract

Ficus insipida Willd. (Moraceae) is a fast growing tree species of early successional stages in the Amazonian nutrient-rich white-water floodplains (várzea). The species is one of the most economically important low-density wood species in the community-based forest management project in the Mamirauá Sustainable Development Reserve (MSDR) in Central Amazonia, where timber species are managed using a polycyclic selection system with a minimum logging diameter (MLD) of 50 cm and a cutting cycle of 25 years. In this study we analyze the floristic composition, stand structure and forest regeneration of a natural 20 year-old stand at an early successional stage and we model tree growth of diameter, height and volume of F. inspida based on tree-ring analysis to define management criteria. The volume growth model indicates that the preferred period for logging should be at a tree age of 17 years when the current annual volume increment peaks. This age corresponds to a diameter of 55 cm, which would be an appropriate MLD.

Amazon floodplain forest tree ring cutting cycle minimum logging diameter (MLD) 

Critères de gestion dérivés de l’analyse de cernes pour Figus insipida Willd. (Moraceaea) dans des forêts inondables amazoniennes

Résumé

Ficus insipida Willd. (Moraceae) est une essence à croissance rapide présente dans les premiers stades de succession dans les forêts inondables sur sols riches d’Amazonie («varzea»). Cette essence est l’une des plus importantes essences productrice de bois de faible densité, dans le cadre du projet de gestion forestière communautaire durable de la réserve de Mamiraua, en Amazonie Centrale. Ces forêts sont gérées sur le principe d’un système polycyclique avec récolte des arbres présentant un diamètre minimal de 50 cm et une révolution de 25 ans entre récoltes. La présente étude analyse la composition floristique, la structure des peuplements et la régénération dans une forêt naturelle âgée de 20 ans et issue d’une phase de régénération. Un modèle de croissance en diamètre, hauteur et volume a été adapté à Ficus insipida sur la base d’une analyse de cernes, afin de définir des critères de gestion. Le modèle de croissance en volume indique que l’âge de récolte optimal est d’environ 17 ans, au moment du pic de production courante annuelle. Á cet âge, les arbres atteignent un diamètre de 55 cm, qui constituerait ainsi un diamètre minimal de récolte (DMR) tout à fait approprié.

Amazonie forêt inondable cerne révolution diamètre minimal de récolte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Albernaz A.L.K.M., Ayres J.M., Logging along the Middle Solimões River, in: Padoch C., Ayres J.M., Pinedo-Vasquez M., Henderson A. (Eds.), Várzea: Diversity, Development, and Conservation of Amazonia’s Whitewater Floodplains, The New York Botanical Garden Press, 1999, pp. 135–151.Google Scholar
  2. [2]
    Ayres J.M., As Matas da Várzea do Mamirauá, MCT/CNPq, Sociedade Civil Mamirauá, Brasília, 1993.Google Scholar
  3. [3]
    Ayres J.M., Alves A.R., Queiroz H.L., Marmontel M., Moura E., Lima D.M., Azevedo A., Reis M., Santos P., Silveira R., Masterson D., Mamirauá. Die Erhaltung der Artenvielfalt in einem amazonischen Überschwemmungswald, in: Lourdes Davies de Freitas M. (Ed.), Amazonien: Himmel der Neuen Welt, Bonn, 1998, pp. 262–274.Google Scholar
  4. [4]
    Barros A.C., Uhl C., Logging along the Amazon River and estuary: Patterns, problems, and potential, For. Ecol. Manage. 77 (1995) 87–105.CrossRefGoogle Scholar
  5. [5]
    Cannell M.G.R., Woody biomass of forest stands, For. Ecol. Manage. 8 (1984) 299–312.CrossRefGoogle Scholar
  6. [6]
    Clark D.A., Clark D.B., Assessing the growth of tropical rain forest trees: Issues for forest modelling and management, Ecol. Appl. 9 (1999) 981–997.CrossRefGoogle Scholar
  7. [7]
    Curtis J.T., McIntosh R.P., An upland forest continuum in the prairie-forest border region of Wisconsin, Ecology 32 (1951) 476–496.CrossRefGoogle Scholar
  8. [8]
    Dawkins H.C., Philip M.S., Tropical moist forest silviculture and management: A history of success and failure, CAB International, Wallingford, 1998.Google Scholar
  9. [9]
    Furch K., Chemistry and bioelement inventory of contrasting Amazonian forest soils, in: Junk W.J., Ohly J.J., Piedade M.T.F., Soares M.G.M. (Eds.), The Central Amazon floodplain: Actual use and options for a sustainable management, Backhuys Publishers, Leiden, 2000, pp. 109–140.Google Scholar
  10. [10]
    Graaf N.N. de, Filius A.M., Huesca Santos A.R., Financial analysis of sustained forest management for timber: Perspectives for application of the CELOS management system in Brazilian Amazonia, For. Ecol. Manage. 177 (2003) 287–299.CrossRefGoogle Scholar
  11. [11]
    Hesmer H., Leben und Werk von Dietrich Brandis, Westdeutscher Verlag, 1975.Google Scholar
  12. [12]
    Higuchi N., Hummel A.C., Freitas J.V., Malinowski J.R.E., Stokes R., Exploração Florestal nas Várzeas do Estado do Amazonas: Seleção de Árvore, Derrubada e Transporte, in: Proceedings of the VIIth Harvesting and Transportation of Timber Products, 8–13 May 1994, IUFRO/UFPR, Curitiba, Brazil, 1994, pp. 168–193.Google Scholar
  13. [13]
    Junk W.J., Wetlands of the tropical South America, in: Whigham D.F., Hejny S., Dykyjova D. (Eds.), Wetlands of the world, Kluwer Publishers, the Netherlands, 1993, pp. 679–739.Google Scholar
  14. [14]
    Junk W.J., Bayley P.B., Sparks R.E., The flood pulse concept in river-floodplain-systems, in: Dodge D.P. (Ed.), Proceedings of the International Large River Symposium, 14–21 September 1986, Ontario, Canada, Can. Spec. Publ. Fish. Aquat. Sci. 106 (1989) 110–127.Google Scholar
  15. [15]
    Junk W.J., Ohly J.J., Piedade M.T.F., Soares M.G.M., The Central Amazon floodplain: Actual use and options for a sustainable management, Backhuys Publishers b.V., Leiden, 2000.Google Scholar
  16. [16]
    Kvist L.P., Andersen M.K., Stagegaard J., Hesselsøe M., Llapapasca C., Extraction from woody forest plants in flood plain communities in Amazonian, Peru: Use, choice, evaluation and conservation status of resources, For. Ecol. Manage. 150 (2001) 147–174.CrossRefGoogle Scholar
  17. [17]
    Lamprecht H., Silviculture in the Tropics: Tropical forest ecosystems and their tree species — Possibilities and methods for their long-term utilization, GTZ, Eschborn, 1989.Google Scholar
  18. [18]
    Lieberman M., Lieberman D., Simulation of growth curves from periodic increment data, Ecology 66 (1985) 632–635.CrossRefGoogle Scholar
  19. [19]
    Martinelli L.A., Almeida S., Brown I.F., Moreira M.Z., Victoria R.L., Filoso S., Ferreira C.A.C., Thomas W.W., Variation in nutrient distribution and potential nutrient losses by selective logging in a humid tropical forest of Rondonia, Brazil, Biotropica 31 (2000) 597–613.CrossRefGoogle Scholar
  20. [20]
    Nebel G., Dragsted J., Simonsen T.R., Vanclay J.K., The Amazon floodplain forest tree Maquira coriacea (Karsten) C.C. Berg: Aspects of ecology and management, For. Ecol. Manage. 150 (2001) 103–113.CrossRefGoogle Scholar
  21. [21]
    Parolin P., Growth, productivity, and use of trees in white water floodplains, in: Junk W.J., Ohly J.J., Piedade M.T.F., Soares M.G.M. (Eds.), The Central Amazon floodplain: Actual use and options for a sustainable management, Backhuys Publishers, Leiden, 2000, pp. 375–391.Google Scholar
  22. [22]
    Parolin P., Ferreira L.V., Are there differences in specific wood gravities between trees in the várzea and igapó (Central Amazonia)? Ecotropica 4 (1998) 25–32.Google Scholar
  23. [23]
    Prance G.T., Notes on the vegetation of Amazonia. III. Terminology of Amazonian forest types subjected to inundation, Brittonia 31 (1979) 26–38.CrossRefGoogle Scholar
  24. [24]
    Pretzsch H., Modellierung des Waldwachstums, Parey Buchverlag, Berlin, 2001.Google Scholar
  25. [25]
    Rozas V., Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: Establishment patterns and the management history, Ann. For. Sci. 62 (2005) 13–22.CrossRefGoogle Scholar
  26. [26]
    Salo J., Kalliola R., Häkkinen I., Mäkkinen Y., Niemelä P., Puhakka M., Coley P.D., River dynamics and the diversity of Amazon low-land forest, Nature 322 (1986) 254–258.CrossRefGoogle Scholar
  27. [27]
    Schöngart J., Dendrochronologische Untersuchungen in Überschwemmungswäldern Zentralamazoniens, Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 149, Erich Goltze Verlag, 2003.Google Scholar
  28. [28]
    Schöngart J., Piedade M.T.F., Ludwigshausen S., Horna V., Worbes M., Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests, J. Trop. Ecol. 18 (2002) 581–597.CrossRefGoogle Scholar
  29. [29]
    Schöngart J., Piedade M.T.F., Wittmann F., Junk W.J., Worbes M., Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests, Oecologia 145 (2005) 454–461.PubMedCrossRefGoogle Scholar
  30. [30]
    Schwartz M.W., Caro T.M., Banda-Sakala T., Assesing the sustainability of harvest of Pterocarpus angolensis in Rukwa Region, Tanzania, For. Ecol. Manage. 170 (2002) 259–269.CrossRefGoogle Scholar
  31. [31]
    Sist P., Picard N., Gourlet-Fleury S., Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo, Ann. For. Sci. 60 (2003) 803–814.CrossRefGoogle Scholar
  32. [32]
    Sokpon N., Biaou S.H., The use of diameter distributions in sustained-use management of remnant forests in Benin: case of Bassila forest reserve in North Benin, For. Ecol. Manage. 161 (2002) 13–25.CrossRefGoogle Scholar
  33. [33]
    Stahle D.W., Mushove P.T., Cleaveland M.K., Roig F., Haynes G.A., Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe, For. Ecol. Manage. 124 (1999) 217–229.CrossRefGoogle Scholar
  34. [34]
    Terborgh J., Flores C.N., Mueller P., Davenport L., Estimating the ages of successional stands of tropical trees from growth increments, J. Trop. Ecol. 14 (1997) 833–856.CrossRefGoogle Scholar
  35. [35]
    Uhl C., Baretto P., Veríssimo A., Barros A.C., Amaral P., Vidal E., Souza C. Jr., Uma abordagem integrada de pesquisa sobre o manejo dos recursos fiorestais na Amazônia brasileira, in: Gascon C., Moutinho P. (Eds.), Floresta Amazônica: Dinâmica, Regeneraçâo e Manejo, MCT/INPA, Manaus, 1998, pp. 313–331.Google Scholar
  36. [36]
    Whitmore T.C., Tropische Regenwälder: Eine Einführung, Spektrum Akad. Verlag, Heidelberg, Berlin, New York, 1993.Google Scholar
  37. [37]
    Wittmann F., Junk W.J., Sapling communities in Amazonian white-water forests, J. Biogeogr. 30 (2003) 1533–1544.CrossRefGoogle Scholar
  38. [38]
    Wittmann F., Schöngart J., Montero J.C., Motzer M., Junk W.J., Piedade M.T.F., Queiroz H.L., Worbes M., Tree species composition and diversity gradients in white-water forests across the Amazon Basin, J. Biogeogr. 33 (2006) 1334–1347.CrossRefGoogle Scholar
  39. [39]
    Worbes M., Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics, IAWA Bull. 10 (1989): 109–122.Google Scholar
  40. [40]
    Worbes M., The forest ecosystem of the floodplains, in: Junk W.J. (Ed.), The Central Amazon floodplains. Ecology of a pulsing system, Springer Verlag, Berlin-Heidelberg-New York, 1997, pp. 223–266.Google Scholar
  41. [41]
    Worbes M., Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela, J. Ecol. 87 (1999) 391–403.CrossRefGoogle Scholar
  42. [42]
    Worbes M., Piedade M.T.F., Schöngart J., Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas, Forstarchiv 72 (2001) 188–200.Google Scholar
  43. [43]
    Worbes M., Staschel R., Roloff A., Junk W.J., Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon, For. Ecol. Manage. 173 (2003) 105–123.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Jochen Schöngart
    • 1
    • 3
  • Florian Wittmann
    • 1
    • 3
  • Martin Worbes
    • 2
  • Maria Teresa Fernandez Piedade
    • 3
  • Hans-Jürgen Krambeck
    • 1
  • Wolfgang Johannes Junk
    • 1
  1. 1.Max-Planck-Institute for LimnologyPlönGermany
  2. 2.Institute of Agronomy in the TropicsUniversity of GöttingenGöttingenGermany
  3. 3.Institute Nacional de Pesquisas da AmazôniaManaus-AMBrazil

Personalised recommendations