Annals of Forest Science

, Volume 67, Issue 8, pp 814–814

Selection of Pinus pinea L. plus tree candidates for cone production

  • Isabel Carrasquinho
  • João Freire
  • Abel Rodrigues
  • Margarida Tomé
Original Article

Abstract

  • • Multivariate statistical analysis was used to define different developmental stages for stone pine (Pinus pinea L.) considering tree size and cone production, without site-specific information.

  • • This was achieved in two steps. First, trees from permanent plots were classified using cluster analysis in five different stages. Second, discriminant analysis was applied to confirm the robustness of the groups generated by cluster analysis and to allow the assignment of new stone pine trees to one of the five development stages. Each development stage was associated with an average cone production.

  • • A methodology for selecting candidates for plus trees was suggested. Trees belonging to the 90th quartile or higher for the number of cones per crop and for cone crop weight were identified throughout the three years of the study.

  • • Trees were evaluated as potential candidates for plus trees using the following variables: the number of cones, cone crop weight and relative production capacity. The relative production capacity was defined as the cone crop weight per square meter of the crown area.

Keywords

Pinus pinea L. discriminant analysis cluster analysis plus trees cone production 

References

  1. Alpuim M., Baeta J., Carneiro M.M., Carvalho M.A., Rocha M.E., and Pessoa, J., 2000. Classification of stone pine selected by pine kernels production, IUFRO International Meeting, Maio, Sevilha.Google Scholar
  2. Akindele S.O. and LeMay V.M., 2006. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. For. Ecol. Manage. 226: 41–48.CrossRefGoogle Scholar
  3. Barreira and Alpuim, 1988. Contribuição para um programa de melhoramento de Pinheiro manso (Pinus pinea L.), Encontro sobre o Pinheiro manso organizado pela Sociedade Portuguesa de Ciências Florestais, de 25–26 de Novembro 1988 em Alcácer do Sal.Google Scholar
  4. Cardoso M.M. and Lobo P.A., 2001. Delimitação de pisos bioclimáticos e regiões de proveniência de Pinheiro manso em Portugal, usando sistemas de informação geográfica, Silva Lusitana 9: 93–108.Google Scholar
  5. Carneiro A.N., 2005. Ganhos genéticos na selecção de características biométricas das pinhas e semente de Pinheiro manso, V Congresso Florestal Nacional, organizado pela Sociedade Portuguesa de Ciências Florestais, 16–19 de Maio 2005 em Viseu.Google Scholar
  6. DGRF, 2006. Resultados Preliminares do Inventário Florestal Nacional 2005–2006, Apresentação realizada na Torre do Tombo, em Março 2008, Direcção Geral dos Recursos Florestais, Lisboa.Google Scholar
  7. Finegan B., Camacho M., and Zamora N., 1999. Diameter increment patterns among 106 tree species in a logged and silviculturally treated Costa Rica rain forest. For. Ecol. Manage. 121: 159–176.CrossRefGoogle Scholar
  8. Gordo F.J., 2004. Selección de grandes productores de fruto de Pinus pinea L. en la Meseta Norte, Tesis Doctoral, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid.Google Scholar
  9. Huang J.Y., Guo X.P., Qiu Y.B., and Chen Z.Y., 2007. Cluster and discriminant analysis of electrochemical noise dta. Electrochimica, Acta 53: 680–687.Google Scholar
  10. Huberty C.J., 1994. Applied Discrinimant Analysis, John Wiley & Sons, Inc., New York, 466 p.Google Scholar
  11. Mutke S., Gordo J., and Gil L., 2005a. Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. Silvae Genet. 54: 189–197.Google Scholar
  12. Mutke S., Gordo J., and Gil L., 2005b. Variability of Mediterranean stone pine cone production: yield loss as response to climate change. Agric. For. Meteorol. 132: 263–272.CrossRefGoogle Scholar
  13. Owens J.N., 2006. The reproductive biology of lodgepole pine, FGC extension note 07, ISBN: 0-7726-5342-9, 62 p.Google Scholar
  14. Owens J.N. and Fernando D.D., 2007. Pollination and seed production on western white pine (Pinus albicaulis Engelm.) seed production in natural stands. Can. J. For. Res. 37: 260–275.CrossRefGoogle Scholar
  15. Owens J.N., Kittirat T., and Malalovich M.F., 2008. Whitebark pine (Pinus albicaulis Engelm.) seed production in natural stands. For. Ecol. Manage. 255: 803–809.CrossRefGoogle Scholar
  16. Phillips P.D., Yasman I., Brash T.E., and van Gardingen P.R., 2002. Grouping tree species for analysis of forest data in Kalimantan (Indonesian Borneo). For. Ecol. Manage. 157: 205–216.CrossRefGoogle Scholar
  17. SAS Institute Inc., 1999. SAS/STAT® User’s Guide, Version 8, Cary NC, 3884 p.Google Scholar
  18. Schulz H. and Härtling S., 2003. Vitality analysis of Scots pines using a multivariate approach. For. Ecol. Manage. 186: 73–84.CrossRefGoogle Scholar
  19. Thompson M.E., 1999. The Science and Art of Market Segmentation Using PROC FASTCLUS, Proceedings of the 24th Annual Conference SAS User’s Group International, 11–14 April, Miami Beach, Florida, No. 270.Google Scholar
  20. Zobel B. and Talbert J., 1984. Applied forest tree improvement, John Wiley & Sons, New York, 505 p.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Isabel Carrasquinho
    • 1
  • João Freire
    • 2
  • Abel Rodrigues
    • 1
  • Margarida Tomé
    • 2
  1. 1.Instituto Nacional dos Recursos BiológicosL-INIAOeirasPortugal
  2. 2.Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations