Advertisement

Annals of Forest Science

, Volume 67, Issue 8, pp 813–813 | Cite as

Epicormic ontogeny on Quercus petraea trunks and thinning effects quantified with the epicormic composition

  • Francis ColinEmail author
  • Rania Mechergui
  • Jean-François Dhôte
  • Florence Fontaine
Original Article

Abstract

  • • Effects of thinning on epicormics have rarely been demonstrated especially due to inaccurate surveying methods.

  • • Our objective was to assess the effect of contrasted thinnings on the ontogeny of epicormics on sessile oak. We used the epicormic composition defined as the arrangement of epicormics in different classes (isolated bud, clustered buds, short and long shoots and “picots”) and quantified by the total frequency of epicormics and the proportion of each class.

  • • Epicormic composition was recorded in a silvicultural experiment testing highly contrasted thinnings, at 3 different stand stages and on lower (0.5–3 m) and upper (3–6 m) boles. Ageing provoked an accumulation of bud clusters and of picots. After thinning, epicormic shoots emerged mainly from (1) still present short epicormic shoots, (2) buds either isolated or in clusters depending on the stand stage. Upper boles bore epicormic compositions close to those observed on lower boles in the few preceding years. Upper logs were more reactive than lower boles.

  • • To conclude, the epicormic composition was a relevant tool to follow the dynamics of the epicormic ontogeny and to demonstrate the effects of thinning on it.

Keywords

epicormic buds epicormic shoots bud cluster Quercus petraea 

References

  1. Aloni R. and Wolf A., 1984. Suppressed buds embedded in the bark across the bole and the occurrence of their circular vessels in Ficus religiosa. Am. J. Bot. 71: 1060–1066.CrossRefGoogle Scholar
  2. Ashton P.M.S., Lowe J.S., and Larson B.C., 1990. Some evidence for the cause of epicormic sprouting in blue mahoe (Hibiscus elatus SW.) in the moist limestone region of Puerto Rico. J. Trop. For. Sci. 3: 123–130.Google Scholar
  3. Barthélémy D. and Caraglio Y., 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99: 375–407.PubMedCrossRefGoogle Scholar
  4. Belligham P.J. and Sparrow A.D., 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89: 409–416.CrossRefGoogle Scholar
  5. Bryan J.A. and Lanner R.M., 1981. Epicormic branching in Rocky Mountain Douglas-fir. Can. J. For. Res. 11: 190–199.CrossRefGoogle Scholar
  6. Burrows G.E., 2002. Epicormic strand structure in Angophora, Eucalyptus and Lopostemon (Myrtaceae)-implications for fire resistance and recovery. New Phytol. 153: 111–131.CrossRefGoogle Scholar
  7. Burrows G.E., Offord C.A., Meagher P.F., and Ashton K., 2003. Axillary Meristems and the development of Epicormic buds in Wollemi Pine (Wollemia nobilis). Ann. Bot. 92: 835–844.PubMedCrossRefGoogle Scholar
  8. Burrows G.E., Hornby S.K., Maters D.A., Bellairs S.M., Prior L.D., and Bowman D.M.J.S., 2008. Leaf axil anatomy and bud reserves in 21 Myrtaceae species from northern Australia. Int. J. Plant. Sci. 169: 1174–1186.CrossRefGoogle Scholar
  9. Colin F., Robert N., Druelle J.L., and Fontaine F., 2008. Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation. Ann. Sci. For. 65: 508.CrossRefGoogle Scholar
  10. Colin F., Ducousso A., and Fontaine F., 2010. Epicormics in 13-year-old Quercus petraea: small effect of provenance and large influence of branches and growth unit limits. Ann. For. Sci. 67: 312.CrossRefGoogle Scholar
  11. Daniel T.W., Helms J.A., and Baker F.S., 1979. Principles of Silviculture. 2nd Edition, McGraw-Hill Series in Forest Resources, 500 p.Google Scholar
  12. Del Tredici P., 2001. Sprouting in temperate trees: A morphological and ecological review. Bot. Rev. 67: 121–140.CrossRefGoogle Scholar
  13. Dhôte J.F., 1997. Effets des éclaircies sur le diamètre dominant dans les futaies régulières de Hêtres ou de Chêne sessile. Rev. For. Fr. XLIX: 557–578.Google Scholar
  14. Edelin C., 1977. Images de l’architecture des conifères, Ph.D. thesis, Université des Sciences et Techniques, Montpellier, 255 p.Google Scholar
  15. Fink S., 1980. Anatomische Untersuchungen über das Vorkommen von Spross- und Wurzelanlagen im Stammbereich von Laub- und NadelBäumen. Allg. Forst-Jagdztg. 151: 160–182.Google Scholar
  16. Fink S., 1983. The occurrence of adventitious and preventitious buds within the bark of some temperate and tropical trees. Am. J. Bot. 70: 523–542.CrossRefGoogle Scholar
  17. Fink S., 1984. Some cases of delayed or induced development of axillary buds from persisting detached meristems in Conifers. Am. J. Bot. 71: 44–51CrossRefGoogle Scholar
  18. Fontaine F., Druelle J.L., Clément C., Burrus M., and Audran J.C., 1998. Ontogeny of proventitious epicormic buds in Quercus petraea. I. In the five years following initiation. Trees 13: 54–62.Google Scholar
  19. Fontaine F., Kiefer E., Clément C., Burrus M., and Druelle J.L., 1999. Ontogeny of proventitious epicormic buds in Quercus petraea. II. From 6 to 40 years of the tree’s life. Trees 14: 83–90.Google Scholar
  20. Fontaine F., Colin F., Jarret P., and Druelle J.L., 2001. Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann. For. Sci. 58: 583–592.CrossRefGoogle Scholar
  21. Fontaine F., Mothe F., Colin F., and Duplat P., 2004. Structural relationships between the epicormic formations on the trunk surface and defects induced in the wood of Quercus petraea. Trees 18: 295–306.Google Scholar
  22. Hartig T., 1878. Anatomie und Physiologie der Holzpflanzen, Berlin, 412 p.Google Scholar
  23. Hibbs D.E., Emmingham W.H., and Bondi M.C., 1989. Thinning red alder: effect of method and spacing. For. Sci. 35: 16–29.Google Scholar
  24. Howell M. and Nix L.E., 2002. Early thinning in bottomland hardwoods. Gen. Tech. Rep. SRS-48. Asheville, NC: USDA, Forest Service, Southern Research Station, pp. 196–200.Google Scholar
  25. Ishii H., Ford E.D., and Dinnie C.E., 2002. The role of epicormic shoot production in maintaining foliage in old Pseudotsuga menziesii (Douglas-fir) trees II. Basal reiteration from older branch axes. Can. J. Bot. 80 (9): 916–926.CrossRefGoogle Scholar
  26. Johnson P.S., Shifley S.R., and Rogers R., 2002. The Ecology and Silviculture of Oaks. CABI Publishing, 503 p.Google Scholar
  27. Kauppi A., Rinne P., and Ferm A., 1987. Initiation, structure and sprouting of dormant basal buds in Betula pubescens. Flora 179: 55–83.Google Scholar
  28. Meadows J.S. and Burkhardt E.C., 2001. Epicormic branches affect lumber grade and value in willow oak. South. J. Appl. For. 25: 136–141.Google Scholar
  29. Nicolini E., Chanson B., and Bonne F., 2001. Stem growth and epicormic branch formation in understorey beech trees (Fagus sylvatica L.). Ann. Bot. 87: 737–750.CrossRefGoogle Scholar
  30. Nicolini E., Caraglio Y., Pélissier R., Leroy C., and Roggy J.C., 2003. Epicormic Branches: a Growth Indicator for the Tropical Forest Tree, Dicorynia guianensis Amshoff (Caesalpiniaceae). Ann. Bot. 92: 97–105.PubMedCrossRefGoogle Scholar
  31. O’Hara K.L. and Berrill J.B., 2009. Epicormic sprout development in pruned coast redwood: pruning severity, genotype, and sprouting characteristics. Ann. For. Sci. 66: 409.CrossRefGoogle Scholar
  32. O’Hara K.L. and Valappil N.I., 2000. Epicormic sprouting of pruned western larch. Can. J. For. Res. 30: 324–328.CrossRefGoogle Scholar
  33. Rey-Lescure E., 1982. The distribution of epicormic branches on the bole of 25 species bordering clear-cut strips. Can. J. For. Res. 12: 687–698.CrossRefGoogle Scholar
  34. Sardin T., 2008. Chênaies continentales. Guide des sylvicultures, ONF Edition, Lavoisier Paris, 455 p.Google Scholar
  35. Smith H.C., 1966. Epicormic branching on eight species of Appalachian hardwoods, USDA Forest Service, Research Note NE-53: 1–4.Google Scholar
  36. Spiecker H., 1991. Zur Steuerung des Dickenwachstums und der Astreinigung von Trauben- und Stieleichen (Quercus petraea (Matt.) Liebl. und Quercus robur L.), Schriftenreihe der Landesforstverwaltung, Band 72, 150 p.Google Scholar
  37. Stone E.L. and Cornwell S.M., 1968. Basal Bud Burls in Betula populifolia. For. Sci. 14: 64–68.Google Scholar
  38. Stubbs J., 1986. Hardwood epicormic branching. Small knots but large losses. South. J. Appl. For. 10: 214–220.Google Scholar
  39. Trimble G.R. and Smith H.C., 1970. Sprouting of dormant buds on border trees. USDA Forest Service Research Paper NE-179: 1–7.Google Scholar
  40. Wahlenberg W.G., 1950. Epicormic branching of young yellow-poplar. J. For. 417–419.Google Scholar
  41. Wignall T.A. and Browning G., 1988. The effects of stand thinning and artificial shading on epicormic bud emergence in pedunculate oak (Quercus robur L.). Forestry 61: 46–59.CrossRefGoogle Scholar
  42. Yokoi S. and Yamaguchi K., 1996. Origin of epicormic branches and effect of thinning on their development in Quercus mongolica var. Grosseserrata. J. Jpn For. Soc. 78: 169–174.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Francis Colin
    • 1
    Email author
  • Rania Mechergui
    • 1
  • Jean-François Dhôte
    • 2
  • Florence Fontaine
    • 3
  1. 1.UMR 1092 INRA-ENGREF “Laboratoire des Ressources Forêt-Bois”INRA-NancyChampenouxFrance
  2. 2.Département RechercheOffice National des Forêts, Direction Technique et Commerciale BoisFontainebleauFrance
  3. 3.UFR Sciences, Laboratoire SDRP, Moulin de la HousseUniversité de Reims Champagne-ArdenneReims Cedex 2France

Personalised recommendations