Advertisement

Annals of Forest Science

, Volume 67, Issue 7, pp 706–706 | Cite as

Climate change and oak growth decline: Dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy

  • Alfredo Di Filippo
  • Alfredo Alessandrini
  • Franco Biondi
  • Silvia Blasi
  • Luigi Portoghesi
  • Gianluca PiovesanEmail author
Original Article

Abstract

  • • We combined stem volume increment analysis with dendroecological tools to address two unresolved issues concerning oak dieback in Mediterranean areas: early detection of changes in stand growth, and identification of mechanisms for observed growth declines.

  • • We reconstructed productivity of a stored coppice formed by Turkey oak (Quercus cerris) to test if its growth decline was linked to climatic variability, while also accounting for age-related and sociological factors.

  • • Drought in May–June and in prior-year late summer-autumn was negatively correlated with current growth during 1974–2006. Previous November water balance was the strongest signal. Moving Correlation Functions (11 y windows) indicated that the May–June signal remained dominant until 1996, thereafter falling to non-significant values in parallel with the May–June water balance drying trend; at the same time the previous autumn correlations reached significant values. Since 1994 there was a two-year lagged response to June water balance, suggesting that, when growth declined, loss of current-year climate signals was accompanied by the emergence of previous-year ones.

  • • Growth and productivity of deciduous oaks in Mediterranean environments is linked to late spring-early summer hydrologic balance; at both annual and decadal timescales, oak growth decline was associated with a delayed response to climate.

Keywords

climate change oak decline stem analysis stored coppice tree-ring 

References

  1. Agrimi M., Ciancio O., Portoghesi L., and Pozzoli R., 1991. I querceti di cerro e farnetto di macchia grande di Manziana: struttura, trattamento e gestione. Cellulosa e Carta 49: 25–49.Google Scholar
  2. Alessandrini A., Blasi S., Biondi F., Chiocchini U., Di Filippo A., Eusepi G., et al., 2008. Geopedologia e dendroauxoclimatologia di cedui di oltre turno. Alberi e Territorio. 6: 14–18.Google Scholar
  3. Allen C.D., 2009. Climate-induced forest dieback: an escalating global phenomenon? Unasylva 60: 231–232.Google Scholar
  4. Akkemik Ü., Çinar Yilmaz H., and Sevgl O., 2006. Cambial activity of the sessile oak (Quercus petraea) in Belgrade forest, Istanbul. Turkish Journal of Agriculture and Forestry 30: 429–438.Google Scholar
  5. Amorini E., Biocca M., Manetti M.C., and Motta E., 1996. A dendroecological study in a declining oak coppice stand. Ann. For. Sci. 53: 731–742.CrossRefGoogle Scholar
  6. Anselmi N., Ferrari B., Nasini M., and Portoghesi L., 2008. Fitopatologia e selvicoltura di un bosco ceduo oltreturno. Alberi e Territorio 6: 19–22.Google Scholar
  7. Arrigoni P.V., 1998. La vegetazione forestale. Boschi e macchie di Toscana. Regione Toscana, Giunta Regionale, Firenze.Google Scholar
  8. Barbaroux C. and Bréda N. 2002. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 22: 1201–1210.PubMedGoogle Scholar
  9. Bascietto M. and Scarascia-Mugnozza G., 2004. A collection of functions to determine annual tree carbon increment via stem-analysis. Ann. For. Sci. 61: 597–602.CrossRefGoogle Scholar
  10. Bianchi M. and La Marca O., 1984. I cedui di cerro nella provincia di Viterbo. Ricerche dendrometriche ed allometriche in relazione ad una ipotesi di matricinatura intensiva. Istituto di assestamento forestale dell’Università di Firenze, Ricerche Sperimentali di Dendrometria ed Auxometria 10: 41–70.Google Scholar
  11. Biondi F., 1999. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 9: 216–227.CrossRefGoogle Scholar
  12. Biondi F. and Swetnam T.W., 1987. Box-Jenkins models of forest interior tree-ring chronologies. Tree-ring Bull. 47: 71–95.Google Scholar
  13. Biondi F. and Waikul K., 2004. DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 30: 303–311.CrossRefGoogle Scholar
  14. Bouriaud O., Bréda N., Dupouey J.L., and Granier A., 2005. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can. J. For. Res. 35: 2920–2933.CrossRefGoogle Scholar
  15. Brakel J.A. and van den Visser H., 1996. The influence of environmental conditions on tree-ring series of Norway spruce for different canopy and vitality classes. For. Sci. 42: 206–219.Google Scholar
  16. Bréda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644.CrossRefGoogle Scholar
  17. Brunetti M., Maugeri M., Monti F., and Nanni T., 2006. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 26: 345–381.CrossRefGoogle Scholar
  18. Cherubini P., Gartner B.L., Tognetti R., Bräker O.U., Schoch W., and Innes J.L., 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78: 119–148.PubMedCrossRefGoogle Scholar
  19. Chhin S., Hogg E.H., Lieffers V.J., and Shongming H., 2008. Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. For. Ecol. Manage. 256: 1692–1703.CrossRefGoogle Scholar
  20. Ciancio O. and Nocentini S., 2004. Il bosco ceduo: selvicoltura, assestamento, gestione, Accademia Scienze Forestali, Firenze.Google Scholar
  21. Claps P., Giordano P., and Laguardia G., 2008. Spatial distribution of the average air temperatures in Italy: quantitative analysis. J. Hydrol. Eng. 13: 242–249.CrossRefGoogle Scholar
  22. Cook E.R. and Peters K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-ring Bull. 41: 45–53.Google Scholar
  23. Cook E.R. and Holmes R.L., 1986. Users Manual for Program ARSTAN, Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA.Google Scholar
  24. Cook E.R. and Kairiukstis L.A., 1990. Methods of Dendrochronology: Applications in Environmental Science, Kluwer Academic Publishers, Dordrecht, pp. 104–123.Google Scholar
  25. Corcuera L., Camarero J.J., and Gil-Pelegrın E., 2004. Effects of a severe drought on growth and wood-anatomical properties of Quercus faginea. IAWA J. 25: 185–204.Google Scholar
  26. Corcuera L., Camarero J.J., Sisó S., and Gil-Pelegrın E., 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20: 91–98.CrossRefGoogle Scholar
  27. Corona P., Romagnoli M., and Torrini L., 1995. Stem annual increments as ecobiological indicators in Turkey oak (Quercus cerris L.). Trees 10: 13–19.CrossRefGoogle Scholar
  28. Čufar K., de Luis M., Eckstein D., and Kajfež-Bogataj L., 2008. Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. Int. J. Biometeorol. 52: 607–615.PubMedCrossRefGoogle Scholar
  29. David T.S., Henriques M.O., Kurz-Besson C., Nunes J., Valente F., Vaz M., et al., 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27: 793–803.PubMedGoogle Scholar
  30. De Luis M., Novak K., Čufar K., and Raventós J., 2009. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees 23: 1065–1073.CrossRefGoogle Scholar
  31. Desprez-Loustau M.L., Marçais B., Nageleisen L.M., Piou D., Vannini A., 2006. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63: 597–612.CrossRefGoogle Scholar
  32. Di Filippo A., Biondi F., Cufar K., de Luis M., Grabner M., Maugeri M., et al., 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J. Biogeogr. 34: 1873–1892.CrossRefGoogle Scholar
  33. Dittmar C., Fricke W., and Elling W., 2006. Impact of late frost events on radial growth (Fagus sylvatica L.) in Southern Germany. Eur. J. For. Res. 125: 249–259.Google Scholar
  34. Dobbertin M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124: 319–333.Google Scholar
  35. Drobyshev I., Linderson H., and Sonesson K., 2007. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24: 97–108.CrossRefGoogle Scholar
  36. Drobyshev I., Niklasson M., Eggertsson O., Linderson H., and Sonesson K., 2008. Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann. For. Sci. 65: 512.CrossRefGoogle Scholar
  37. Dwyer J.P., Cutter B.E., and Wetteroff J.J., 1995. A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. For. Ecol. Manage. 75: 69–75.CrossRefGoogle Scholar
  38. Efron B. and Tibshirani R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1: 54–75.CrossRefGoogle Scholar
  39. Friedrichs D.A., Büntgen U., Frank D.C., Esper J., Neuwirth B., and Löffler J., 2009. Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol. 29: 39–51.PubMedCrossRefGoogle Scholar
  40. Guiot J., 1991. The bootstrapped response function. Tree-ring Bull. 51: 39–41.Google Scholar
  41. Helama S., Läänelaid A., Raisio J., and Tuomenvirta H., 2009. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319: 163–174.CrossRefGoogle Scholar
  42. Hirayama D., Nanami S., Itoh A., and Yamakura T., 2008. Individual resource allocation to vegetative growth and reproduction in subgenus Cyclobalanopsis (Quercus, Fagaceae) trees. Ecol. Res. 23: 451–458.CrossRefGoogle Scholar
  43. Hurrell J.W., 1995. Decadal trends in the North Atlantic oscillations: regional temperatures and precipitation. Science 269: 676–679.PubMedCrossRefGoogle Scholar
  44. Kahle H.P., Karjalainen T., Schuck A., Ågren G.I., Kellomäki S., Mellert K.H., et al., 2008. Causes and consequences of forest growth trends in Europe. European Forest Institute Research Report 21 — Result of the RECOGNITION Project. Brill, Leiden.Google Scholar
  45. Kirilenko A.P. and Sedjo R.A., 2007. Climate change impacts on forestry. PNAS 104: 19697–19702.PubMedCrossRefGoogle Scholar
  46. Jump A.S., Hunt J.M., and Peñuelas J., 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Change Biol. 12: 2163–2174.CrossRefGoogle Scholar
  47. La Marca O., 2004. Elementi di dendrometria. Patron Editore, Padova, Italy.Google Scholar
  48. La Marca O., Scopigno D., Tomaiuolo M., 2009. Primi risultati in prove di avviamento in un ceduo misto del Gargano. Forest — Rivista di Selvicoltura ed Ecologia Forestale. 6: 120–128.CrossRefGoogle Scholar
  49. LeBlanc D., 1990. Relationships between breast-height and whole stem growth indices for red spruce on Whiteface Mountain, New York. Can. J. For. Res. 20: 1399–1407.CrossRefGoogle Scholar
  50. Lebourgeois F., Cousseau G., and Ducos Y., 2004. Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Ann. For. Sci. 61: 361–372.CrossRefGoogle Scholar
  51. Lebourgeois F., 2006. Sensibilité au climat des Chênes sessile et pédonculé dans le réseau RENECOFOR. Comparaison avec les hêtraies. Rev. For. Fr. 58: 29–44.Google Scholar
  52. Lilleskov E.A., Bruns T.D., Dawson T.E., and Camacho F.J., 2009. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytol. 182: 483–494.PubMedCrossRefGoogle Scholar
  53. Linares J.C., Delgado-Huertas A., Camarero J.J., Merino J., and Carreira J.A., 2009. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161: 611–624.PubMedCrossRefGoogle Scholar
  54. Marçais B. and Bréda N., 2006. Role of an opportunistic pathogen in the decline of stressed oak trees. J. Ecol. 94: 1214–1223.CrossRefGoogle Scholar
  55. Mariotti A., Ballabrera-Poy J., and Zeng N., 2005. Tropical influence on Euro-Asian autumn rainfall variability. Clim. Dyn. 24: 511–521.CrossRefGoogle Scholar
  56. Mariotti A., Zeng N., Yoon J.H., Artale V., Navarra A., Alpert P., et al., 2008. Mediterranean water cycle changes: transition to drier 21st century conditions in observations and cmIP3 simulations. Environ. Res. Lett. 3: 044001.CrossRefGoogle Scholar
  57. Martín-Benito D., Cherubini P., del Río M., and Cañellas I., 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22: 363–373.CrossRefGoogle Scholar
  58. McCabe G.J. and Markstrom S.L., 2007. A monthly water-balance model driven by a graphical user interface. US Geological Survey Open-File report 2007.Google Scholar
  59. McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., et al., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 4: 719–739.CrossRefGoogle Scholar
  60. Metsaranta J.M. and Lieffers V.J., 2009. Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry 82: 163–173.CrossRefGoogle Scholar
  61. Meyer F.D. and Bräker O.U., 2001. Climate response in dominant and suppressed spruce trees, Picea abies (L.) Karst., on a subalpine and lower montane site in Switzerland. Ecoscience 8: 105–114.Google Scholar
  62. Mosca E., Montecchio L., Sella L., and Garbaye J., 2007. Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). For. Ecol. Manage. 244: 129–140.CrossRefGoogle Scholar
  63. Nahm M., Radoglou K., Halyvopoulos G., Geßler A., Rennenberg H., and Fotelli M.N., 2006. Physiological performance of beech (Fagus sylvatica L.) at its Southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Plant Biol. 8: 52–63.PubMedCrossRefGoogle Scholar
  64. Nogués Bravo D., Araújo M.B., Lasanta T., and López Moreno J.I., 2008. Climate change in Mediterranean mountains during the 21st Century. Ambio, 37: 280–285.CrossRefGoogle Scholar
  65. Ohno Y., Umeki K., Watanabe I., Takiya M., Terazawa K., Yasaka M., et al., 2009. Basal area growth and mortality of Betula maximowicziana affected by crown dieback in a secondary forest in Hokkaido, northern Japan. J. For. Res. 14: 37–43.CrossRefGoogle Scholar
  66. Orwig D.A. and Abrams M.D., 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11: 474–484.CrossRefGoogle Scholar
  67. Parry M., Palutikof J., Hanson C., and Lowe J., 2008. Squaring up to reality. Nature reports climate change, 2, 68–70. URL http://www. nature.com/reports/climatechange.CrossRefGoogle Scholar
  68. Pedersen B.S., 1999. The mortality of Midwestern overstory oaks as a bioindicator of environmental stress. Ecol. Appl. 9: 1017–1027.CrossRefGoogle Scholar
  69. Piovesan G. and Schirone B., 2000. Winter North Atlantic Oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). Int. J. Biometeorol. 44: 121–127.PubMedCrossRefGoogle Scholar
  70. Piovesan G. and Adams J.M., 2005. The evolutionary ecology of masting: does the environmental prediction hypothesis also have a role in mesic temperate forests? Ecol. Res. 20: 739–743.CrossRefGoogle Scholar
  71. Piovesan G., Biondi F., Bernabei M., Di Filippo A., and Schirone B., 2005. Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecol. 27: 197–210.CrossRefGoogle Scholar
  72. Piovesan G., Biondi F., Di Filippo A., Alessandrini A., and Maugeri M., 2008. Drought-driven growth reduction in old beech (Fagus sylvatica) forests of the central Apennines, Italy. Glob. Change Biol. 14: 1–17.CrossRefGoogle Scholar
  73. Planchon O., Dubreuil V., Bernard V., and Blain S., 2008. Contribution of tree-ring analysis to the study of droughts in northwestern France (XIX–XXth century). Clim. Past Discussions 4: 249–270. URL http://www.clim-past-discuss.net/4/249/2008/CrossRefGoogle Scholar
  74. Plutino M., 2006. Struttura e dinamica evolutiva dei boschi in stato di abbandono gestionale: il caso delle fustaie di cerro nell’Alto Lazio. Ph.D. Thesis, University of Tuscia, http://dspace.unitus.it/dspace/handle/2067/567.Google Scholar
  75. Pokharel B. and Froese R.E., 2009. Representing site productivity in the basal area increment model for FVS-Ontario. For. Ecol. Manage. 258: 657–666.CrossRefGoogle Scholar
  76. R Development Core Team, 2005. R: a language and environment for statistical computing, reference index version 2.2.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
  77. Ragazzi A., Moricca S., Turco E., and Dellavalle I., 2002. Dendroclimatic analysis of Quercus robur infected with Fusarium eumartii. Phytopathol. Mediterr. 41: 131–137.Google Scholar
  78. Romagnoli M. and Codipietro G., 1996. Pointer years and growth in Turkey oak (Quercus cerris L) in Latium (central Italy). A dendro-climatic approach. Ann. Sci. For. 53: 671–684.CrossRefGoogle Scholar
  79. Rosenzweig C., Karoly D., Vicarelli M., Neofotis P., Wu Q., Casassa G., et al., 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453: 353–357.PubMedCrossRefGoogle Scholar
  80. Rozas V., 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann. For. Sci. 62: 209–218.CrossRefGoogle Scholar
  81. Running S.W., 2008. Climate change: ecosystem disturbance, carbon, and climate. Science 321: 652–653.PubMedCrossRefGoogle Scholar
  82. Salter P.J. and Williams J.B., 1967. The influence of texture on the moisture characteristics of soils. A method of estimating the available-water capacities of profiles in the field. Eur. J. Soil Sci. 18: 174–181.CrossRefGoogle Scholar
  83. Sarris D., Christodoulakis D., and Körner C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob. Change Biol. 13: 1187–1200.CrossRefGoogle Scholar
  84. Schröter D., Cramer W., Leemans R., et al., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 5752: 1333–1337.CrossRefGoogle Scholar
  85. Selås V., Hogstad O., Andersson G., and Von Proschwitz T., 2001. Population cycles of autumnal moth, Epirrita autumnata, in relation to birch mast seeding. Oecologia, 129: 213–219.CrossRefGoogle Scholar
  86. Standovár T. and Somogyi Z., 1998. Corresponding patterns of site quality, decline and tree growth in a sessile oak stand. Eur. J. For. Pathol. 28: 133–144.CrossRefGoogle Scholar
  87. Stokes M.A. and Smiley T.L., 1996. An introduction to tree-ring dating. Reprint of 1968 U. of Chicago Press ed. University of Arizona Press, Tucson, USA.Google Scholar
  88. Swaty R.L., Deckert R.J., Whitham T.G., and Gehring C.A., 2004. Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85: 1072–1084.CrossRefGoogle Scholar
  89. Tardif J.C., Conciatori F., Nantel P., and Gagnon D., 2006. Radial growth and climate responses of white oak (Quercus alba) and northern red oak (Quercus rubra) at the northern distribution limit of white oak in Quebec, Canada. J. Biogeogr. 33: 1657–1669.CrossRefGoogle Scholar
  90. Van Mantgem P.J., Stephenson N.L., Byrne J.C., Daniels L.D., Franklin J.F., Fulé P.Z., et al., 2009. Widespread increase of tree mortality rates in the Western United States. Science 323: 521–524.CrossRefGoogle Scholar
  91. Vannini A. and Valentini R., 1994. Influence of water relations on Quercus cerris-Hypoxylon mediterraneum interaction: a model of drought-induced susceptibility to a weakness parasite. Tree Physiol. 14: 129–139.PubMedGoogle Scholar
  92. Vannini A., Lucero G., Anselmi N., and Vettraino A.M., 2009. Response of endophytic Biscogniauxia mediterranea to variation in leaf water potential of Quercus cerris. For. Pathol. 39, 8–14.Google Scholar
  93. Vieira J., Campelo F., and Nabais C., 2009. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees, 23: 257–265.CrossRefGoogle Scholar
  94. Voelker S.L., Muzika R.S., and Guyette R.P., 2008. Individual tree and stand level influences on the growth, vigor, and decline of Red oaks in the Ozarks. For. Sci. 54: 8–20.Google Scholar
  95. Weber P., Bugmann H., and Rigling A., 2007. Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J. Veg. Sci. 18: 777–792.CrossRefGoogle Scholar
  96. Wigley T.M.L., Briffa K.R., and Jones P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. 23: 201–213.CrossRefGoogle Scholar
  97. Zweifel R., Zimmermann L., Zeugin F., and Newbery D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot. 57: 1445–1459.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Alfredo Di Filippo
    • 1
  • Alfredo Alessandrini
    • 1
  • Franco Biondi
    • 2
  • Silvia Blasi
    • 1
  • Luigi Portoghesi
    • 3
  • Gianluca Piovesan
    • 1
    Email author
  1. 1.DendrologyLab, DAFUniversità degli Studi della TusciaViterboItaly
  2. 2.DendrolabUniversity of NevadaRenoUSA
  3. 3.DISAFRIUniversità degli Studi della TusciaViterboItaly

Personalised recommendations