Advertisement

Annals of Forest Science

, Volume 67, Issue 7, pp 705–705 | Cite as

Differences in branch characteristics of Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing

  • Jaume GortEmail author
  • Ane Zubizarreta-Gerendiain
  • Heli Peltola
  • Antti Kilpeläinen
  • Pertti Pulkkinen
  • Raimo Jaatinen
  • Seppo Kellomäki
Original Article

Abstract

  • • We studied the differences in branch characteristics along the stems of six different genetic entries of 20 year old Scots pines (Pinus sylvestris L.) grown at different spacing (current stand density range 2000–4000 trees ha−1) in central Finland. Furthermore, we studied the phenotypic correlations between yield, wood density traits and branch characteristics. All the genetic entries had Kanerva pine (plus tree S1101) as a father tree, whereas the mother tree represented Finnish plus trees from southern, central and northern Finland.

  • • Spacing affected all yield traits, wood density and living branch characteristics such as relative average branch diameter and relative cumulative branch area (p < 0.05). As a comparison, genetic entry affected height, while origin group (southern, central and northern ones) affected most of the studied traits. Regardless of spacing, the northern origin had, on average, the largest stem diameter and highest wood density, while the central one was the tallest one. Furthermore, average branch diameter along the stem was affected by branch age, origin group and spacing, while average branch angle was affected by branch age and genetic entry (p < 0.05).

  • • In general the average branch size could be decreased especially in lower tree canopy by denser spacing during the early phase of the rotation, but only at the expense of tree growth. Correspondingly differences between origins are mainly related to their differences in stem growth.

Keywords

spacing yield traits branch diameter branch angle cumulative branch area 

References

  1. Gort J., Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Routa J., and Jaatinen R., 2009. Differences in fibre properties in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fenn. 43: 355–368.Google Scholar
  2. Haapanen M. and Pöykkö T., 1993. Genetic relationship between growth and quality traits in an 8-year-old half-sib progeny trial of Pinus sylvestris. Scan. J. For. Res. 8: 305–312.CrossRefGoogle Scholar
  3. Haapanen M., Velling P., and Annala M.-J., 1997. Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fenn. 31: 3–12.Google Scholar
  4. Hannrup B., Ekberg I., and Persson A., 2000. Genetic correlations among wood, growth capacity and stem traits in Pinus silvestris. Scan. J. For. Res. 15: 161–170.CrossRefGoogle Scholar
  5. Ikonen V., Kellomäki S., and Peltola H., 2009. Sawn timber properties of Scots pine as affected by initial stand density, thinning and pruning: a simulation based approach. Silva Fenn. 43: 411–431.Google Scholar
  6. Kang Y.K., Zhang S.Y., and Mansfield S.D., 2004. The effects of initial spacing on wood density, fibre and pulp properties in jack pine (Pinus banksiana Lamb.). Holzforschung 58: 455–463.CrossRefGoogle Scholar
  7. Kellomäki S. and Tuimala A., 1981. Puuston tiheyden vaikutus puiden oksikkuuteen taimikkoja riukuvaiheen männiköissä (in Finnish). [Abstract: Effect of stand density on branchiness of young Scots pines]. Folia For. 478 p.Google Scholar
  8. Kellomäki S. and Oker-Blom P., 1983. Canopy structure and light climate in a young Scots pine stand. Silva Fenn. 17: 1–21Google Scholar
  9. Kellomäki S., Ikonen V.-P., Peltola H., and Kolström T., 1999. Modelling the structural growth of Scots pine with implications for wood quality. Ecol. Model. 112: 117–134.CrossRefGoogle Scholar
  10. Klein T.W., Defries J.C., and Finkbeiner C.T., 1973. Heritability and genetic correlations: standard error of estimates and sample size. Behav. Genet. 3: 355–364.PubMedCrossRefGoogle Scholar
  11. Kärki L., 1985. Crop tree ideotypes and harvest index should be the basis of selection in cultivated trees. Foundation of Forest Tree Breeding in Finland, Annual report 1984, pp. 20–23.Google Scholar
  12. Laasasenaho J., 1982. Taper curve and volume functions for pine, spruce and birch. Comm. Inst. For. Fenn. 108: 11–108.Google Scholar
  13. Mäkinen H., 1999a. Growth, suppression, death, and self-pruning of branches of Scots pine in southern and central Finland. Can. J. For. Res. 29: 585–594.CrossRefGoogle Scholar
  14. Mäkinen H., 1999b. Effect of stand density on radial growth of branches of Scots pine in southern and central Finland. Can. J. For. Res. 29: 1216–1224.CrossRefGoogle Scholar
  15. Mäkinen, H. and Colin F., 1998. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information. Can. J. For. Res. 28: 1686–1696.CrossRefGoogle Scholar
  16. Mörling T., 2002. Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann. For. Sci. 59: 29–40.CrossRefGoogle Scholar
  17. Peltola H., Gort J., Pulkkinen P., Zubizarreta Gerendiain A., Jouni Karppinen J., and Ikonen V.-P., 2009. Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fenn. 43: 339–354.Google Scholar
  18. Persson B., Persson A., Ståhl E.G., and Karlmats U., 1995. Wood quality of Pinus sylvestris progenies at various spacings. For. Ecol. Manage. 76: 127–138.CrossRefGoogle Scholar
  19. Pöykkö T., 1993. Selection criteria in Scots pine breeding with special reference to ideotype. The Foundation for Forest Tree Breeding in Finland, Report 6, 66 p.Google Scholar
  20. Pöykkö T. and Velling P., 1993. Inheritance of the narrow-crowned Scots pine E 1101, “Kanerva pine”. Silva Fenn. 27: 219–226.Google Scholar
  21. Ståhl E.G., 1988. Transfer effect and variations in basic density and tracheid length of Pinus sylvestris L. populations. Stud. For. Suec. 180, 15 p.Google Scholar
  22. Ståhl E.G. and Ericson B., 1991. Inheritance of wood properties. In: M. Giertych and C. Mátyás, (Ed.), Genetics of Scots Pine. Developments in Plant Genetics and Breeding, Vol. 3, Elsevier, Amsterdam, pp. 231–241.Google Scholar
  23. Velling P., 1988. The relationships between yield components in the breeding of Scots pine. Academic Diss., Univ. Helsinki, Helsinki, (in Finnish), 59 p.Google Scholar
  24. Wang T., Aitken S., Rozenberg P., and Millie F., 2000. Selection for improved growth and wood density in Lodgepole Pine: effects on radial patterns of wood variation. Wood Fiber Sci. 32: 391–403.Google Scholar
  25. Wilhelmsson L., Arlinger J., Spångberg K., Lundqvist S.-O., Grahn T., Hedenberg Ö., and Olsson L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scan. J. For. Res. 17: 330–350.CrossRefGoogle Scholar
  26. Zobel B.J. and Talbert J., 1984. Applied forest tree improvement. John Wiley & Sons, New York, 505 p.Google Scholar
  27. Zobel B.J. and Van Buijtenen J.P. 1989. Wood variation: Its causes and control. Springer-Verlag, Berlin, Germany, 363 p.Google Scholar
  28. Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., and Kellomäki S., 2009. Effects of genetic entry and competition by neighbouring trees on growth and wood properties of cloned Norway spruce (Picea abies). Ann. For. Sci. 66: 806.CrossRefGoogle Scholar
  29. Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A., and Kellomäki S., 2007. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37: 2600–2611.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Jaume Gort
    • 1
    Email author
  • Ane Zubizarreta-Gerendiain
    • 1
  • Heli Peltola
    • 1
  • Antti Kilpeläinen
    • 1
  • Pertti Pulkkinen
    • 2
  • Raimo Jaatinen
    • 2
  • Seppo Kellomäki
    • 1
  1. 1.Faculty Sciences and Forestry, School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  2. 2.Haapastensyrjä Breeding StationFinnish Forest Research InstituteLäyliäinenFinland

Personalised recommendations