Annals of Forest Science

, Volume 67, Issue 7, pp 701–701 | Cite as

Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley

  • Urs GimmiEmail author
  • Thomas Wohlgemuth
  • Andreas Rigling
  • Christian W. Hoffmann
  • Matthias Bürgi
Original Article


  • • Increased mortality of Scots pine (Pinus sylvestris L.) and spreading of deciduous trees are observed in the Swiss Rhone valley. Previous research identified climate change effects as main drivers of this trend. On the local scale, we hypothesize that legacies from past anthropogenic disturbances are superimposed on climate effects.

  • • We reconstructed land-use history and quantified changes in tree species composition from 1930 to 1994 on 9468 ha of forested land. The aim was to analyze the contribution of anthropogenic disturbances to the observed changes and to disentangle human impact from climate change effects.

  • • At altitudes below 1 200 m a.s.l. we found a shift from pine (−11.4%) to deciduous trees (+11%) with significantly lower increase of deciduous trees in stands formerly used for grazing and/or litter collecting. Conversely, pine decrease was not correlated with former anthropogenic disturbances. We interpret pine mortality as an effect of increased drought stress due to climate change while spread of deciduous trees is driven by land-use change. Grazing and litter collecting hindered deciduous tree regeneration and it was not until their abandonment a few decades ago that forest composition started to change. At higher elevations the shift from Norway spruce (Picea abies; −8.5%) to European larch (Larix decidua; +8.2%) corresponds to silvicultural management schemes, aimed at promoting larch recruitment.

  • • Our study illustrates the importance of disentangling climate from land-use change effects for understanding shifts in forest composition. The findings are relevant for other regions in the European Alps where forests undergo comparable environmental changes.


historical ecology anthropogenic disturbance land-use history woodland pasture forest litter collecting 


  1. Albert C.H., Thuiller W., Lavorel S., Davies I.D., and Garbolino E., 2008. Land-use change and subalpine tree dynamics: colonization of Larix decidua in French subalpine grasslands. J. Appl. Ecol. 45: 659–669.CrossRefGoogle Scholar
  2. Axelsson A-L. and Östlund L., 2001. Retrospective gap analysis in a Swedish boreal forest landscape using historical data. For. Ecol. Manage. 147: 109–122.CrossRefGoogle Scholar
  3. Axelsson A-L., Östlund L., and Hellberg E., 2002. Changes in mixed deciduous forests of boreal Sweden 1866–1999 based on interpretation of historical records. Landscape Ecol. 17: 403–418.CrossRefGoogle Scholar
  4. Bigler C., Bräker O.U., Bugmann H., Dobbertin M., and Rigling A., 2006. Drought as an inciting mortality factor in Scot pine stands of the Valais, Switzerland. Ecosystems 9: 330–343.CrossRefGoogle Scholar
  5. Birks H.J.B., Line J.M., and Persson T., 1988. Quantitative estimation of human impact on cultural landscape development. In: Birks H.H., Birks H.J.B., Kaland P.E., and Moe D. (Eds.), The cultural landscape, past, present and future, Cambridge University Press, Cambridge, pp. 229–240.Google Scholar
  6. Bürgi M., 1999. A case study of forest change in the Swiss lowlands. Landscape Ecol. 14: 567–575.CrossRefGoogle Scholar
  7. Bürgi M., Russell E.W.B., and Motzkin G., 2000. Effects of postsettlement human activities on forest composition in the north-eastern United States: a comparative approach. J. Biogeogr. 27: 1123–1138.CrossRefGoogle Scholar
  8. Bürgi M. and Gimmi U., 2007. Three objectives of historical ecology: the case of litter collecting in Central European forests. Landscape Ecol. 22: 77–87.CrossRefGoogle Scholar
  9. Chauchard S., Carcaillet C., and Guibal F., 2007. Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10: 936–948.CrossRefGoogle Scholar
  10. Curt T., Prévosto B., Klesczewski M., and Lepart J., 2003. Post-grazing Scots pine colonization of mid-elevation heathlands: population structure, impact on vegetation composition and diversity. Ann. For. Sci. 60: 711–724.CrossRefGoogle Scholar
  11. Dambrine E., Dupouey J.L., Laut L., Humbert L., Thinon M., Beaufils T., and Richard H., 2007. Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 88: 1430–1439.PubMedCrossRefGoogle Scholar
  12. De Quervain F., 1963–1967. Geotechnische Karte der Schweiz, Schweizerische Geotechnische Kommission, Bern.Google Scholar
  13. Dobbertin M., Mayer P., Wohlgemuth T., Feldmeyer-Christe E., Graf U., Zimmermann N., and Rigling A., 2005. The decline of Pinus sylvestris L. forests in the Swiss Rhone valley — a result of drought stress? Phyton 44: 153–156.Google Scholar
  14. Dzwonko Z., 2001. Effect of proximity to ancient deciduous woodland on restoration of the field layer vegetation in a pine plantation. Ecography 24: 198–204.CrossRefGoogle Scholar
  15. Dzwonko Z. and Gawronski S., 2002. Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol. Conserv. 106: 389–398.CrossRefGoogle Scholar
  16. Egan D. and Howell E.A., 2001. The historical ecology handbook. Island Press, Washington DC, 457 p.Google Scholar
  17. Flühler H., Keller T., and Schwager H., 1981. Die Immissionsbelastung der Föhrenwälder im Walliser Rhonetal. In: Waldschäden im Walliser Rhonetal (Schweiz), Mitteilungen der Eidgenössischen Anstalt für das forstliche Versuchswesen 57, pp. 361–499.Google Scholar
  18. Foster D.R., 2002. Insights from historical geography to ecology and conservation: lessons from New England landscape. J. Biogeogr. 29: 1269–1275.CrossRefGoogle Scholar
  19. Foster D.R., Hall B., Barry S., Clayden S., and Pershall T., 2002. Cultural, environmental and historical controls of vegetation patterns and the modern conservation setting on the island of Martha’s Vineyard, USA. J. Biogeogr. 29: 1381–1400.CrossRefGoogle Scholar
  20. Foster D.R., Swanson F., Aver J., Burke I., Borwaw N., Tilman D., and Knapp A., 2003. The importance of land-use legacies to ecology and conservation. BioScience 53: 77–88.CrossRefGoogle Scholar
  21. Fuhrer J., Beniston M., Fischlin A., Frei C., Goyette S., Jasper K., and Pfister C., 2006. Climate risks and their impact on agriculture and forests in Switzerland. Clim. Change 79: 79–102.CrossRefGoogle Scholar
  22. Garbarino M., Weisberg P.J., and Motta R., 2009. Interacting effects of physical environment and anthropogenic disturbance on the structure of European Larch (Larix decidua Mill.) forests. For. Ecol. Manage. 257: 1794–1802.CrossRefGoogle Scholar
  23. Gimmi U. and Bürgi M., 2007. Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais). Environ. Hist. 13: 211–246.CrossRefGoogle Scholar
  24. Gimmi U., Bürgi M., and Wohlgemuth T., 2004. Wie oft brannte der Walliser Wald im 20. Jahrhundert? Schweiz. Z. Forstwes. 155: 437–440.CrossRefGoogle Scholar
  25. Gimmi U., Bürgi M., and Stuber M., 2008. Reconstructing anthropogenic disturbance regimes in forest ecosystems — a case study from the Swiss Rhone valley. Ecosystems 11: 113–124.CrossRefGoogle Scholar
  26. Gimmi U., Wolf A., Bürgi M., Scherstjanoi M., and Bugmann H., 2009. Quantifying disturbance effects on vegetation carbon pools in mountain forests based on historical data. Reg. Environ. Change 9: 121–130.CrossRefGoogle Scholar
  27. Glatzel G., 1990. The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128: 67–74.CrossRefGoogle Scholar
  28. Glatzel G., 1991. The impact of historic land-use and modern forestry on nutrient relations of Central Europe forest ecosystems. Fert. Res. 27: 1–8.CrossRefGoogle Scholar
  29. Graae B.J., Sunde P.B., and Fritzbøger B., 2003. Vegetation and soil differences in ancient opposed to new forests. For. Ecol. Manage. 177: 179–190.CrossRefGoogle Scholar
  30. Hansen A.J., Neilson R.R., Dale V.H., Flather C.H., Iverson L.R., Currie D.J., Shafer S., Cook R., and Bartlein P.J., 2001. Global change in forests: Responses of species, communities, and biomes. BioScience 51: 765–779.CrossRefGoogle Scholar
  31. Hüttl R.F. and Schaaf W., 1995. Nutrient supply of forest soils in relation to management and site history. Plant Soil 168: 31–41.CrossRefGoogle Scholar
  32. Kirby K.J. and Watkins C., 1998. The ecological history of European forests, CAB International, Cambridge, 392 p.Google Scholar
  33. Kreutzer K., 1972. Über den Einfluss der Streunutzung auf den Stickstoffhaushalt von Kiefernbeständen (Pinus sylvestris L.). Forstwiss. Centbl. 91: 263–9.CrossRefGoogle Scholar
  34. Leps J. and Smilauer P., 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, 269 p.CrossRefGoogle Scholar
  35. Leuzinger S., Zotz G., Asshoff R., and Korner C., 2005. Responses of deciduos forest trees to severe drought in Central Europe. Tree Physiol. 25: 641–650.PubMedGoogle Scholar
  36. Moser B., Gimmi U., and Wohlgemuth T., 2006. Ausbreitung des Erdbeerspinats Blitum virgatum nach dem Waldbrand von Leuk, Wallis (2003). Bot. Helv. 116: 179–183.CrossRefGoogle Scholar
  37. Moser B., Temperli C., Schneiter G., Wohlgemuth T., in review. Drought induced tree species shift after wildfire disturbance in a Central Alpine region? Eur. J. For. Res.Google Scholar
  38. Motta R. and Garbarino F., 2003. Stand history and its consequences for the present and future dynamic in two silver fir (Abies alba Mill.) stands in the high Pesio Valley (Piedmont, Italy). Ann. For. Sci. 60: 361–370.CrossRefGoogle Scholar
  39. Motta R., Morales M., and Nola P., 2006. Human land-use, forest dynamics and tree growth at the treeline in the Western Italian Alps. Ann. For. Sci. 63: 739–747.CrossRefGoogle Scholar
  40. Poyatos R., Llorens P., Piñol J., and Rubio C. 2008. Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate. Ann. For. Sci. 65: 306.CrossRefGoogle Scholar
  41. Prévosto B., Dambirne E., Moares C., and Curt T., 2004. Effects of volcanic ash chemistry and former agricultural use on the soils and vegetation of naturally regenerated woodlands in the Massif Central, France. Catena 56: 239–261.CrossRefGoogle Scholar
  42. Rebetez M. and Dobbertin M., 2004. Climate change may already threaten Scots pine stands in the Swiss Alps. Theor. Appl. Climatol. 79: 1–9.CrossRefGoogle Scholar
  43. Richardson D.M., Rundel P.W., Jackson S.T., Teskey R.O., Aronson J., Bytnerowicz A., Wingfield M.J., and Proches S., 2007. Human impacts in pine forests: past, present, and future. Annu. Rev. Ecol. Evol. Syst. 38: 275–297.CrossRefGoogle Scholar
  44. Rigling A. and Cherubini P., 1999. Wieso sterben die Waldföhren im “Telwald” bei Visp? Eine Zusammenfassung bisheriger Studien und eine dendroökologische Untersuchung. Schweiz. Z. Forstwes. 150: 113–131.CrossRefGoogle Scholar
  45. Rigling A., Dobbertin M., and Wohlgemuth T., 2004. Waldföhrenwälder der Alpen im Umbruch — eine Bioindikation für Global Change? Bauhinia 18: 56–57.Google Scholar
  46. Rigling A., Dobbertin M., Bürgi M., Feldmeier-Christe E., Gimmi U., Ginzler C., Graf U., Mayer P., Zweifel R., and Wohlgemuth T., 2006. Baumartenwechsel in den Walliser Waldföhrenwäldern. In: Wohlgemuth T. (Ed.), Wald und Klimawandel, Forum für Wissen 2006, Birmensdorf, pp. 23–33.Google Scholar
  47. Schönfeld U., Rigling D., and Polomski J., 2004. Eine neue Gefahr für die Föhren der Schweiz? Der Kiefernholznematode. Wald Holz 85: 35–37.Google Scholar
  48. Spiecker H., 1999. Overview of recent growth trends in European forests. Water Air Soil Pollut. 116: 33–46.CrossRefGoogle Scholar
  49. Weber P., Rigling A., and Bugmann H., 2007. Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J. Veg. Sci. 18: 777–792.CrossRefGoogle Scholar
  50. Weber P., Bugmann H., and Rigling A., 2008a. Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: a modelling study. Ecol. Model. 210: 301–311.CrossRefGoogle Scholar
  51. Weber P., Bugmann H., Fonti P., and Rigling A., 2008b. Using retrospective dynamic competition indices to estimate future forest succession. For. Ecol. Manage. 294: 96–106.CrossRefGoogle Scholar
  52. Werlen C., 1994. Elaboration de la carte de végétation forestière du Valais. Schweiz. Z. Forstwes. 14: 607–617.Google Scholar
  53. Wermelinger B., Rigling A., Schneider Mathis D., and Dobbertin M., 2008. Assessing the role of bark- and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 33: 239–249.CrossRefGoogle Scholar
  54. Wohlgemuth T., Bürgi M., Scheidegger C., and Schütz M., 2002. Dominance reduction of species through disturbance — a proposed management principle for Central European forests. For. Ecol. Manage. 166: 1–15.CrossRefGoogle Scholar
  55. Wulf M., 2004. Plant species richness of afforestations with different former use and habitat continuity. For. Ecol. Manage. 195: 191–204.CrossRefGoogle Scholar
  56. Zumbrunnen T., Bugmann H., Conedera M., and Bürgi M., 2009. Linking forest fire regimes and climate — a historical analysis in a dry inner Alpine valley. Ecosystems 12: 73–86.CrossRefGoogle Scholar
  57. Zweifel R., Rigling A., and Dobbertin M., 2009. Species-specific stomatal response of trees to microclimate — a functional link between climate change and vegetation dynamics. J. Veg. Sci. 20: 442–454.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Urs Gimmi
    • 1
    Email author
  • Thomas Wohlgemuth
    • 1
  • Andreas Rigling
    • 1
  • Christian W. Hoffmann
    • 1
  • Matthias Bürgi
    • 1
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations