Annals of Forest Science

, Volume 67, Issue 5, pp 506–506 | Cite as

Physiological variation among western redcedar (Thuja plicata Donn ex D. Don) populations in response to short-term drought

Original Article


  • • Variation in the ability of western redcedar (Thuja plicata Donn ex D. Don) populations to withstand water stress may exist because this species is found in coastal and interior biogeoclimatic subzones representing the full range of precipitation regimes in British Columbia, Canada.

  • • Seven western redcedar populations from locations in British Columbia, representing a wide range of habitat types, were assessed for their gas exchange and water relations response to controlled drought.

  • • Before drought, population variation occurred in stomatal conductance, net CO2 assimilation rate and intrinsic water use efficiency and the relative water content at turgor loss point. During drought, populations had different responses of net CO2 assimilation to decreasing predawn shoot water potential. After drought, populations differed in stomatal conductance and intrinsic water use efficiency, plus osmotic potential at turgor loss point, osmotic potential at saturation and apparent cuticular transpiration. Western redcedar populations from drier-inland habitats had a lower osmotic potential at turgor loss point, lower relative water content at turgor loss point and lower apparent cuticular transpiration in response to drought than populations from coastal origin with temperate maritime habitat.

  • • Reduction of cuticular water loss and adjustments of cellular water relations in response to drought was found to occur among seven western redcedar populations originating along a precipitation gradient while; there were minimal population differences in the gas exchange response to drought.


western redcedar population performance gas exchange water relations drought response 

Variations physiologiques dans des populations de thuyas géants (Thuja plicata Donn ex D. Don) en réponse à une sécheresse courte


  • • Les variations de capacité à résister au déficit hydrique dans des populations de thuyas géants (Thuja plicata Donn Ex D. Don) apparaissent parce que cette espèce se rencontre dans les sous-zones biogéoclimatiques côtières et de l’intérieur représentant l’éventail complet de régimes de précipitations en Colombie britannique (Canada).

  • • Sept populations de thuyas géants issues de sites de Colombie britannique, représentant un large éventail des types d’habitats, ont été évaluées pour leurs échanges gazeux et leurs relations hydriques en réponse à une sécheresse contrôlée.

  • • Avant la sécheresse, une variabilité existait entre populations pour la conductance stomatique, l’assimilation nette de CO2, l’efficience intrinsèque d’utilisation de l’eau et la teneur relative en eau au point de perte de turgescence. Pendant la sécheresse, les populations ont présenté des réponses différentes de l’assimilation nette de CO2 à la baisse du potentiel hydrique de base. Après la sécheresse, les populations différaient en conductance stomatique et efficience intrinsèque d’utilisation de l’eau, mais également en potentiel osmotique au point de perte de turgescence, en potentiel osmotique à saturation et en transpiration cuticulaire apparente. Les populations de thuyas géants des habitats intérieurs les plus secs présentaient un plus faible potentiel osmotique au point de perte de turgescence, une plus faible teneur en eau au point de perte de turgescence et une plus faible transpiration cuticulaire apparente en réponse à la sécheresse que les populations d’origine côtière avec un habitat maritime tempéré.

  • • Une réduction des pertes d’eau cuticulaires et des ajustements des relations hydriques cellulaires en réponse à la sécheresse ont été trouvés parmi sept populations de thuyas géants originaires de sites se trouvant le long d’un gradient de précipitations, alors qu’il n’y avait que de faibles différences entre populations pour la réponse des échanges gazeux à la sécheresse.


performances de populations de thuyas géants échanges gazeux relations hydriques réponse à la sécheresse 


  1. Abrams M.D., 1988. Sources of variation in osmotic potentials with special reference to North American tree species. For. Sci. 34: 1030–1046.Google Scholar
  2. Aspelmeier S. and Leuschner C., 2004. Genotypic variation in drought response of silver birch (Betula pendula): leaf water status and carbon gain. Tree Physiol. 24: 517–528.PubMedGoogle Scholar
  3. Bazzaz F.A., 1996. Plants in changing environments. Cambridge University Press, Cambridge, 330 p.Google Scholar
  4. Daly C., Taylor G., and Gibson W., 1997. The PRISM Approach to Mapping Precipitation and Temperature. In: 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., pp. 10–12.Google Scholar
  5. Dickmann D., 1992. Role of physiology in forest tree improvement. Silva Fenn. 25: 248–256.Google Scholar
  6. Fan S., Grossnickle S.C., and Russell J.H., 2008. Morphological and physiological variation in western redcedar (Thuja plicata Donn Ex D. Don) populations under contrasting soil water conditions. Trees 22: 671–683.CrossRefGoogle Scholar
  7. Green R.N., Courtin P.J., Klinka K., Slaco R.J., and Ray C.A., 1984. Site diagnosis, tree species selection, and slashburning guidelines for the Vancouver Forest Region. Land Manage. Handb. No. 8, British Columbia Ministry of Forests, Victoria, B.C., 143 p.Google Scholar
  8. Grossnickle S.C., 1993. Shoot water relations and gas exchange of western hemlock and western red cedar seedlings during establishment on a reforestation site. Trees, 7: 148–155.CrossRefGoogle Scholar
  9. Grossnickle S.C. and Fan S., 1999. Genetic variation in response to drought of interior spruce (Picea glauca (Moench) Voss × P. engelmannii Parry ex engelm.). Scand. J. For. Res. 14: 240–250.CrossRefGoogle Scholar
  10. Grossnickle S.C. and Folk R.S., 2007. Field performance potential of a somatic interior spruce seedlot. New For. 34: 51–72.CrossRefGoogle Scholar
  11. Grossnickle S.C., Fan S., and Russell J.H., 2005. Variation in gas exchange and water use efficiency patterns among populations of western redcedar. Trees 19: 32–42.CrossRefGoogle Scholar
  12. Guy R.D. and Holowachuk D.L., 2001. Population differences in stable carbon isotope ratio of Pinus contorta Dougl. ex Loud: relationship to environmental, climate of origin, and growth potential. Can. J. Bot. 79: 274–283.Google Scholar
  13. Hamann A. and Wang T.L., 2006. Potential effects of climate change on tree species and ecosystem distribution in British Columbia. Ecology 87: 2773–2786.PubMedCrossRefGoogle Scholar
  14. Hope G.D., Mitchell W.R., Lloyd D.A., Erickson W.R., Harper W.L., and Wikeem B.M., 1991. Interior-Douglas-fir zone. In: Meidinger D. and Pojar J. (Eds.), Ecosystems of British Columbia. British Columbia Ministry of Forests, Special Report No. 6, pp. 153–166.Google Scholar
  15. Johnsen K.H. and Major J.E., 1995. Gas exchange of 20-year-old black spruce families displaying a genotype × environment interaction in growth rate. Can. J. For. Res. 25: 430–439.CrossRefGoogle Scholar
  16. Johnsen K.H. and Major J.E., 1999. Shoot water relations of mature black spruce families displaying a genotype × environment interaction in growth rate. I. Family and site effects over three growing seasons. Tree Physiol. 19: 367–374.PubMedGoogle Scholar
  17. Ketcheson M.V., Braumandl T.F., Meidinger G., Utzig G., Demarchi D.A., and Wikeem B.M., 1991. Interior cedar — Hemlock Zone. In: Meidinger D. and Pojar J. (Eds.), Ecosystems of British Columbia. British Columbia Ministry of Forests, Special Report No. 6, pp. 167–182.Google Scholar
  18. Krasowski M.J. and Owens J.N., 1991. Growth and morphology of western red cedar seedlings as affected by photoperiod and moisture stress. Can. J. For. Res. 21: 340–352.CrossRefGoogle Scholar
  19. Lloyd D.K., Angrove K., Hope G., and Thompson C., 1990. A guide for site identification and interpretation of the Kamloops Forest Region. Vols. 1 and 2, Land Manage. Handb. No. 23, British Columbia Ministry of Forests, Victoria, B.C., 399 p.Google Scholar
  20. Major J.E. and Johnsen K.H., 1996. Family variation in photosynthesis of 22-year-old black spruce: a test of two models of physiological response to water stress. Can. J. For. Res. 26: 1922–1933.CrossRefGoogle Scholar
  21. Major J.E., Grossnickle S.C., Folk R.S., and Arnott J.T., 1994. Influence of nursery culture on western redcedar. I. Measurement of seedling attributes before fall and spring planting. New For. 8: 211–229.CrossRefGoogle Scholar
  22. Meidinger D. and Pojar J., 1991. Ecosystems of British Columbia. British Columbia Ministry of Forests, Victoria, B.C., Special Rep. No. 6, pp. 9–38, 81–112, 153–182.Google Scholar
  23. Minore D., 1990. Thuja plicata Donn ex D. Don, Western Redcedar. In: Burns R.M., Honkala B.H. (Compilers), Silvics of North America: 1. Conifers, Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, D.C., Vol. 1, pp. 590–600.Google Scholar
  24. Monson R.K. and Grant M.C., 1989. Experimental studies of ponderosa pine. III. Differences in photosynthesis, stomatal conductance, and water-use efficiency between two genetic lines. Am. J. Bot. 76: 1041–1047.CrossRefGoogle Scholar
  25. Nuszdorfer F.C., Klinka K., and Demarchi D.A., 1991. Coastal Douglasfir zone. In: Meidinger D. and Pojar J. (Eds.), Ecosystems of British Columbia. British Columbia Ministry of Forests, Special Report No. 6, pp. 81–94.Google Scholar
  26. O’Connell L.M., Viard F., Russell J., and Ritland K., 2001. The mating system in natural populations of western redcedar (Thuja plicata). Can. J. Bot. 79: 753–756.Google Scholar
  27. O’Neill G.A., Ukrainetz N.K., Carlson M.R., Cartwright C.V., Jaquish B.C., King J.N., Krakowski J., Russell J.H., Stoehr M.U., Xie C., and Yanchuk A.D., 2008. Assisted migration to address climate change in British Columbia: recommendations for interim seed transfer standards. B.C. Min. For. Range, Res. Br., Victoria, B.C. Tech. Rep. 048. Scholar
  28. Parker W.C. and Pallardy S.G., 1985. Genotypic variation in tissue water relations of leaves and roots of black walnut Juglans nigra seedlings. Physiol. Plant. 64: 105–110.CrossRefGoogle Scholar
  29. Parker W.C. and Pallardy S.G., 1991. Gas exchange during a soil drying cycle in seedlings of four black walnut Juglans nigra families. Tree Physiol. 9: 339–348.PubMedGoogle Scholar
  30. Pojar J., Meidinger D.V., and Klinka K., 1991. Concepts. In: Meidinger D. and Pojar J. (Eds.), Ecosystems of British Columbia. British Columbia Ministry of Forests, Special Report No. 6, pp. 9–38.Google Scholar
  31. Rehfeldt G.E., 1994. Genetic structure of western redcedar populations in the Interior West. Can. J. For. Res. 24: 670–680.CrossRefGoogle Scholar
  32. Russell J.H., 1993. Genetic architecture, genecology and phenotypic plasticity in seed and seedling traits of yellow cedar (Chamaecyparis nootkatensis (D. Don) Spach). Dissertation, Univ. of British Columbia.Google Scholar
  33. Russell J.H., Burdon R.B., and Yanchuk A.D., 2003. Inbreeding depression and variance structures for height and adaptation in self- and outcross Thuja plicata families in varying environments. For. Gen. 10: 171–184.Google Scholar
  34. Schulte P.J. and Hinckley T.M., 1985. A comparison of pressure-volume curve data analysis techniques. J. Exp. Bot. 36: 1590–1602.CrossRefGoogle Scholar
  35. Van Eerden E. and Gates J.W., 1990. Seedling production and processing: container. In: Lavender D.P., Parish R., Johnson C.M., Montgomery G., Vyse A., Willis R.A., and Winston D. (Eds.), Regenerating British Columbia’s forests. Univ. of British Columbia Press, Vancouver, B.C., pp. 226–234.Google Scholar
  36. Vanhinsberg N.B. and Colombo S.J., 1990. Effect of temperature and needle anatomy and transpiration of Picea mariana after bud set. Can. J. For. Res. 20: 598–601.CrossRefGoogle Scholar
  37. Wang T. and Russell J.H., 2006. Evaluation of selfing effects on western redcedar growth and yield in operational plantations using the tree and stand simulator (TASS). For. Sci. 281–289.Google Scholar
  38. Yeh F.C., 1988. Isozyme variation of Thuja plicata (Cupressaceae) in British Columbia. Biochem. Syst. Ecol. 16: 373–377.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  1. 1.CellFor Inc.SaanichtonCanada
  2. 2.Cowichan Lake Research StationBC Ministry of Forests and RangeMesachie LakeCanada

Personalised recommendations