Annals of Forest Science

, Volume 67, Issue 5, pp 504–504 | Cite as

Effect of extractives on conferred and natural durability of Cupressus lusitanica heartwood

  • Ahmed Mohareb
  • Peter Sirmah
  • Lyne Desharnais
  • Stéphane Dumarçay
  • Mathieu Pétrissans
  • Philippe GérardinEmail author
Original Article


  • • Identification of extractives present in Cupressus lusitanica heartwood has been conducted using GC-MS analyses. The chromatogram of toluene/ethanol extracts indicated the presence of large amounts of benzaldehyde and numerous terpenic compounds such as cedrol, agathadiol, epimanool, bornyl acetate, α-cedrene and β-cedrene.

  • • The effect of these extractives on the natural durability of cypress wood was investigated on heart wood blocks exposed to pure culture of Poria placenta before or after solvent extraction. Weight losses revealed severe fungal degradations on the extracted blocks compared to unextracted ones.

  • • Efficiency of heartwood extractives as inhibitors of the growth of Poria placenta on malt/agar test confirms their contribution to cypress natural durability.

  • • Cypress blocks were treated at 240 °C for different times to reach different levels of thermodegradation to evaluate effect of heat treatment on fungal durability. Results indicate that evaporation of volatile extractives during the first few minutes of heat treatment contribute to decreased wood durability, while longer treatment times lead to the expected improvement of durability.

  • • This study suggests that the content of extractives, which may be modified during wood drying or weathering processes, could be the origin of the conflicting data described in the literature concerning cypress natural durability.


Cupressus lusitanica durability extractives heat treatment decay 

Effet des extractibles sur la durabilité naturelle du duramen de cyprès


  • • Les extractibles présents dans le duramen de Cupressus lusitanica ont été analysés par GC-MS. Le chromatogramme des extraits obtenus à l’aide d’un mélange toluène/éthanol met en évidence des quantités importantes de benzaldéhyde et de nombreux composés terpéniques comme le cédrol, l’agathadiol, l’épimanool, l’acétate de bornyl, l’α-cédrène et le β-cédrène.

  • • L’effet des extractibles sur la durabilité naturelle du cyprès a été évalué à l’aide d’essais réalisés sur des blocs préalablement extraits ou non puis exposés à Poria placenta. Les pertes de masse mettent en évidence une dégradation importante des échantillons extraits comparativement aux témoins non extraits.

  • • L’efficacité des extractibles comme inhibiteur de croissance de Poria placenta a été évaluée. Les résultats indiquent une forte inhibition du développement fongique.

  • • Des blocs de cyprès ont été traités à 240 °C pendant des temps variables pour atteindre différents niveaux de thermo-dégradation. L’évaporation des extractibles volatils durant la première phase du traitement thermique conduit à une diminution de la durabilité du bois aux agents de pourriture, alors que des traitements plus longs conduisent à l’augmentation de durabilité attendue.

  • • Cette étude suggère que la teneur en extractibles, susceptible de varier suite au séchage ou aux intempéries, peut être à l’origine des observations contradictoires rapportées dans la littérature concernant la durabilité naturelle du cyprès.


Cupressus lusitanica durabilité extractibles traitement thermique pourriture 


  1. Aleu J., Hanson J.R., Hernandez Galan R., and Collado I.G., 2001. Biotransformation of the fungistatic sesquiterpenoids patchoulol, ginsenol, cedrol and globulol by Botrytis cinerea. J. Mol. Catal B Enzym. 11: 329–334.CrossRefGoogle Scholar
  2. Alén R., Kotilainen R., and Zaman A., 2002. Thermochemical behaviour of Norway spruce (Picea abies) at 180–225 °C. Wood Sci. Technol. 36: 163–171.CrossRefGoogle Scholar
  3. Boonstra M.J., Pizzi A., and Rigolet S., 2006. Correlation of 13C-NMR analysis with fungal decay tests of polymeric structural wood constituents. I. Basidiomycetes. J. Appl. Polym. Sci. 101: 2639–2649.CrossRefGoogle Scholar
  4. Celimene C.C., Micales J.A., Ferge L., and Young R., 1999. Efficacy of pinosylvins against whiterot and brownrot fungi. Holzforschung 53: 491–497.CrossRefGoogle Scholar
  5. Daniels C.R. and Russell J., 2007. Analysis of Western Redcedar (Thuja plicata Donn) heartwood components by HPLC as a possible screening tool for trees with enhanced natural durability. J. Chromatogr. Sci. 45: 281–285.PubMedGoogle Scholar
  6. Engstrom K., Widmark A.K., Brishammar S., and Helmersson S., 1999. Antifungal activity to Phytophthora infestans of sesquiterpenoids from infected potato tubers. Potato Research 42: 43–50.CrossRefGoogle Scholar
  7. Finney D.J., 1971. Probit analysis, Cambridge University Press, Cambridge, 318 p.Google Scholar
  8. Hakkou M., Pétrissans M., Zoulalian A., and Gérardin P., 2005. Investigation of Wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 89: 1–5.CrossRefGoogle Scholar
  9. Hakkou M., Pétrissans M., Gérardin P., and Zoulalian A., 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polym. Degrad. Stab. 9: 393–399.CrossRefGoogle Scholar
  10. Haupt M., Leithoff H., Meier D., Puls J., Richter H.G., and Faix O., 2003. Heartwood extractives and natural durability of plantation grown teakwood (Tectona grandis L.)— a case study. Holz Roh-Werkst 61: 473–474.CrossRefGoogle Scholar
  11. Jasicka-Misiaka I., Lipoka J., Nowakowskaa E.W., Wieczoreka P.P., Młynarzb P., and Kafarskia P., 2004. Antifungal activity of the carrot seed oil and its major sesquiterpene compounds. Z. Naturforsch. 791–796.Google Scholar
  12. Jeong S., Lim J.P., and Hoon Jeon H., 2007. Chemical composition and antibacterial activities of the essential oil from Abies koreana. Phytother. Res. 21: 1246–1250.PubMedCrossRefGoogle Scholar
  13. Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., and Mete E., 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 99: 8788–8795.PubMedCrossRefGoogle Scholar
  14. Kuźma K.L., Kalemba D., Różalski M., Różalska B., Więckowska-Szakiel M., Krajewska U., and Wysokińska H., 2009. Chemical composition and biological activities of essential oil from Salvia sclarea plants regenerated in vitro. Molecules 14: 1438–1447.PubMedCrossRefGoogle Scholar
  15. Lukmandaru G. and Takahashi K., 2009. Variation in the natural termite resistance of teak (Tectona grandis Linn. fil.) wood as a function of tree age. Ann. For. Sci. 65: 708.CrossRefGoogle Scholar
  16. Mburu F., Dumarçay S., and Gérardin P., 2007. Evidence of fungicidal and termicidal properties of Prunus africana heartwood extractives. Holzforschung 61: 323–325.CrossRefGoogle Scholar
  17. Mburu F., Dumarçay S., Huber F., Pétrissans M., and Gérardin P., 2007. Evaluation of thermally modified Grevillea robusta heartwood as an alternative of shortage of wood resource in Kenya: characterisation of physicochemical properties and improvement of bio-resistance. Bioresour. Technol. 98: 3478–3486.PubMedCrossRefGoogle Scholar
  18. Militz H., 2002. Thermal treatment of wood: European processes and their background. International Research Group on Wood Preservation, IRG/WP 02-40241.Google Scholar
  19. Neya B., Hakkou M., Pétrissans M., and Gérardin P., 2004. On the durability of Burkea africana heartwood: evidence of biocidal and hydrophobic properties responsible for durability. Ann. For. Sci. 61: 277–282.CrossRefGoogle Scholar
  20. Nguila Inari G., Mounguengui S., Dumarçay S., Pétrissans M., and Gérardin P., 2007. Evidence of char formation during heat treatment by mild pyrolysis. Polym. Degrad. Stab. 92: 997–1002.CrossRefGoogle Scholar
  21. Patzelt M., Stingl R., and Teischinger A., 2002. Termische Modifikation von Holz und deren Einfluβ auf ausgewählte Holzeigenschaften, In Modifiziertes Holz Eigenschaften und Märkte, Lignovisionen Band 3, pp. 101–149.Google Scholar
  22. Rančić A., Soković M., Vukojević J., Simić A., Marin P., Duletić-Laušević S., and Djoković D., 2005. Chemical composition and antimicrobial activities of essential oils of Myrrhis odorata (L.) scop, Hypericum perforation L and Helichrysum arenarium (L.) Moench. JEOR 17: 341–345.Google Scholar
  23. Reyes Chilpa R., Gomez-Garibay F., Moreno-Tores G., Jimenez-Estrada M., and Quiroz-Vasquez R.I., 1998. Flavonoids and isoflavonoids with antifungal properties from Platymiscium yucatanum heartwood. Holzforschung 52: 459–462.CrossRefGoogle Scholar
  24. Scheffer T.C. and Morrell J.J., 1998. Natural durability of wood: a worldwide checklist of species. Forest Research Laboratory, Oregon State University, Research Contribution 22, 58 p.Google Scholar
  25. Welzbacher C. and Rapp A., 2007. Durability of thermally modified timber from industrial-scale processes in different use classes: Results from laboratory and field tests. Wood Mater. Sci. Eng. 2: 4–14.CrossRefGoogle Scholar
  26. Venkatasamy R., 2006. Comparing microbial colonisation and decay rates of wood from sound and aphid-killed Kenyan grown Mexican cypress (Cupressus lusitanica). International Research Group on Wood Preservation IRG/WP 06-10599.Google Scholar
  27. Wikberg H. and Maunu S.L., 2004. Characterisation of thermally modified hard- and soft woods by 13C CPMAS NMR. Carbohydr. Polym. 58: 461–466.CrossRefGoogle Scholar
  28. Windeisen E., Wegener G., Lesnino G., and Schumacher P., 2002. Investigation of the correlation between extractives content and natural durability in 20 cultivated larch trees. Holz Roh-Werkst 60: 373–374.CrossRefGoogle Scholar
  29. Yildiz S., Gezer E.D., and Yildiz U.C., 2006. Mechanical and chemical behaviour of spruce wood modified by heat. Build. Environ. 41: 1762–1766.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Ahmed Mohareb
    • 1
    • 2
  • Peter Sirmah
    • 1
    • 3
  • Lyne Desharnais
    • 1
  • Stéphane Dumarçay
    • 1
  • Mathieu Pétrissans
    • 1
  • Philippe Gérardin
    • 1
    Email author
  1. 1.Laboratoire d’Études et de Recherche sur le Matériau Bois, IFR 110Nancy UniversitéVandoeuvre-lès-NancyFrance
  2. 2.Department of Forestry and Wood Technology, Faculty of AgricultureAlexandria UniversityEl-ShatbyEgypt
  3. 3.Wood Science and Technology DepartmentMoi UniversityEldoretKenya

Personalised recommendations