Annals of Forest Science

, Volume 67, Issue 5, pp 502–502

A model bridging distance-dependent and distance-independent tree models to simulate the growth of mixed forests

  • Thomas Perot
  • François Goreaud
  • Christian Ginisty
  • Jean-François Dhôte
Original Article

Abstract

  • • It is widely believed that distance-independent tree models fail to take into account the complexity of mixed stands due to the fact that spatial structure often has a greater impact on growth and dynamics in mixed stands than in pure stands. On the other hand, distance-dependent tree models are difficult to use because they require a map of the stand, which is not only very costly but also impracticable in a routine management context.

  • • This paper reports the development of a model bridging distance-dependent and distanceindependent tree models, and that is designed to simulate the growth of a mixed forest. The model used distributions of the number of neighbours to reconstruct tree neighbourhoods and compute the competition indices needed as inputs to the growth model.

  • • Data were collected from a mixed forest of sessile oak and Scots pine in central France. The study showed that local competition indices explained a significant proportion of growth variability and that intraspecific competition was greater than interspecific competition. The model based on neighbourhood distributions gave consistent predictions compared to a distance-dependent model.

  • • This type of model could be used instead of distance-dependent models in management contexts.

Keywords

Mixed stand oak-pine forest growth model neighbourhood distribution 

Un modèle intermédiaire entre un modèle arbre dépendant et indépendant des distances pour simuler la croissance des peuplements mélangés

Résumé

  • • On considère généralement que les modèles arbre indépendant des distances ne permettent pas de rendre compte de la complexité des peuplements mélangés. En effet, la structure spatiale a souvent un rôle plus important sur la croissance et la dynamique dans ces peuplements que dans les peuplements purs. Les modèles arbre dépendant des distances sont quant à eux difficile à utiliser, car ils nécessitent une cartographie du peuplement qui est une information très coûteuse à obtenir et qui n’est pas disponible dans un cadre de gestion courante.

  • • Cet article présente un modèle intermédiaire entre un modèle arbre indépendant des distances et un modèle arbre dépendant des distances. Ce modèle a été développé pour simuler la croissance de peuplements mélangés. Il utilise des distributions de nombre de voisins pour reconstruire le voisinage des arbres. Ces voisinages reconstruits permettent ensuite de calculer les indices de compétition nécessaires dans l’équation de croissance.

  • • Les données ont été récoltées dans des peuplements mélangés de chêne sessile et de pin sylvestre dans le centre de la France. Ce travail montre que des indices de compétition locaux expliquent une part significative de la croissance individuelle et que la compétition intraspécifique est supérieure à la compétition interspécifique. Le modèle basé sur les distributions de voisinage donne des prédictions cohérentes par rapport au modèle arbre dépendant des distances.

  • • Ce type de modèle pourrait être utilisé à la place des modèles arbre dépendant des distances dans des contextes de gestion.

Mots-clés

Peuplement mélangé mélange chêne-pin modèle de croissance distribution de voisinage indice de compétition 

References

  1. Begon M., Harper J.L., and Townsend C.R. 1996. Ecology: individuals, populations and communities. Blackwell Publishing, Oxford, 1068 p.Google Scholar
  2. Biging G.S. and Dobbertin M. 1992. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For. Sci. 38: 695–720.Google Scholar
  3. Biondi F., Klemmedson J.O., and Kuehl R.O. 1992. Dendrochronological analysis of single-tree interactions in mixed pine oak stands of central Arizona, USA. For. Ecol. Manage. 48: 321–333.CrossRefGoogle Scholar
  4. Canham C.D., LePage P.T., and Coates K.D. 2004. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can. J. For. Res. 34: 778–787.CrossRefGoogle Scholar
  5. Canham C.D., Papaik M.J., Uriarte M., McWilliams W.H., Jenkins J.C., and Twery M.J. 2006. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecol. Appl. 16: 540–554.PubMedCrossRefGoogle Scholar
  6. Coligny F.D., Ancelin P., Cornu G., Courbaud B., Dreyfus P., Goreaud F., Gourlet-Fleury S., Meredieu C., and Saint-André L. 2003. CAPSIS: computer-aided projection for strategies in silviculture: advantages of a shared forest-modelling platform. International Workshop of IUFRO working party 4.01 “Reality, models and parameter estimation”. Sesimbra, Portugal, June 2–5, 2002. Modelling Forest Systems. CABI Publishing, Wallingford, UK, pp. 319–323.Google Scholar
  7. Comas C. and Mateu J. 2007. Modelling forest dynamics: a perspective from point process methods. Biom. J. 49: 176–196.PubMedCrossRefGoogle Scholar
  8. Goreaud F. 2000. Apports de l’analyse de la structure spatiale en forêt tempérée à l’étude et la modélisation des peuplements complexes. M.S. thesis, ENGREF, 362 p.Google Scholar
  9. Goreaud F., Loreau M., and Millier C. 2002. Spatial structure and the survival of an inferior competitor: a theoretical model of neighbourhood competition in plants. Ecol. Model. 158: 1–19.CrossRefGoogle Scholar
  10. Goreaud F., Loussier B., Ngo Bieng M.A., and Allain R. 2004. Simulating realistic spatial structure for forest stands: a mimetic point process. Interdisciplinary Spatial Statistics Workshop, Paris. 22 p.Google Scholar
  11. Grissino-Mayer H.D. 2002. Research report evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57: 205–221.Google Scholar
  12. Illian J., Penttinen A., Stoyan H., and Stoyan D. 2008. Statistical analysis and modelling of spatial point patterns, Wiley, Chichester, 560 p.Google Scholar
  13. Kokkila T., Makela A., and Nikinmaa E. 2002. A method for generating stand structures using Gibbs marked point process. Silva Fenn. 36: 265–277.Google Scholar
  14. Lotwick H.W. and Silverman B.W. 1982. Methods for analysing spatial processes of several types of points. J. R. Stat. Soc. B 44: 406–413.Google Scholar
  15. Morneau F., Duprez C., and Hervé J.C. 2008. Les forêts mélangées en France métropolotaine. Caractérisation à partir des résultats de l’Inventaire Forestier National. Rev. For. Fr. LX: 107–120.Google Scholar
  16. Munro D.D. 1974. Forest growth models — a prognosis. Growth models for tree and stand simulation. Proceedings of the IUFRO congress S4-01-4, Stockholm, Department of forest yield research, Royal College of Forestry pp. 7–21.Google Scholar
  17. Ngo Bieng M.A. 2007. Construction de modèles de structure spatiale permettant de simuler des peuplements virtuels réalistes. Application aux peuplements mélangés chêne sessile — pin sylvestre de la région Centre. M.S. Thesis, ENGREF-Cemagref, Nogent-sur-Vernisson, 183 p.Google Scholar
  18. Ngo Bieng M.A., Ginisty C., Goreaud F., and Perot T. 2006. A first typology of oak and Scots pine mixed stands in the Orléans forest (France), based on the canopy spatial structure. N. Z. J. For. Sci. 36: 325–346.Google Scholar
  19. Phillips P.D., Thompson I.S., Silva J.N.M., van Gardingen P.R., and Degen B. 2004. Scaling up models of tree competition for tropical forest population genetics simulation. Ecol. Model. 180: 419–434.CrossRefGoogle Scholar
  20. Pommerening A. 2006. Evaluating structural indices by reversing forest structural analysis. For. Ecol. Manage. 224: 266–277.CrossRefGoogle Scholar
  21. Pommerening A. and Stoyan D. 2008. Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows. Can. J. For. Res. 38: 1110–1122.CrossRefGoogle Scholar
  22. Porté A. and Bartelink H.H. 2002. Modelling mixed forest growth: a review of models for forest management. Ecol. Model. 150: 141–188.CrossRefGoogle Scholar
  23. Pretzsch H. 1997. Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony. For. Ecol. Manage. 97: 237–253.CrossRefGoogle Scholar
  24. Pukkala T. 1989. Methods to describe the competition process in a tree stand. Scan. J. For. Res. 4: 187–202.CrossRefGoogle Scholar
  25. Regent I. 2005. Windendro 2005a: manual for tree-ring analysis. Université du Québec à Chicoutimi, 132 p.Google Scholar
  26. Rio M. and Sterba H. 2009. Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann. For. Sci. 66: 502.CrossRefGoogle Scholar
  27. Ripley B.D. 1977. Modelling spatial patterns. J. R. Stat. Soc. B 39: 172–212.Google Scholar
  28. Ripley B.D. 1981. Spatial statistics. Wiley, New York, 250 p.CrossRefGoogle Scholar
  29. Stadt K.J., Huston C., Coates K.D., Feng Z., Dale M.R.T., and Lieffers V.J. 2007. Evaluation of competition and light estimation indices for predicting diameter growth in mature boreal mixed forests. Ann. For. Sci. 64: 477–490.CrossRefGoogle Scholar
  30. Stoyan D. and Penttinen A. 2000. Recent applications of point process methods in forestry statistics. Stat. Sci. 15: 61–78.CrossRefGoogle Scholar
  31. Tilman D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, USA.Google Scholar
  32. Ulrich E., Renaud J.P., Nageleisen L.M., Flot J.L., Dumé G., Bilger I., Colin E., Ferrand P., Peyron J.L., and Hamza N. 2006. Les indicateurs de gestion durable des forêts française — édition 2005. Ministère de l’Agriculture et de la Pêche, IFN, 148 p.Google Scholar
  33. Uriarte M., Canham C.D., Thompson J., and Zimmerman J.K. 2004a. A neighborhood analysis of tree growth and survival in a hurricanedriven tropical forest. Ecol. Monogr. 74: 591–614.CrossRefGoogle Scholar
  34. Uriarte M., Condit R., Canham C.D., and Hubbell S.P. 2004b. A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? J. Ecol. 92: 348–360.CrossRefGoogle Scholar
  35. Wimberly M.C and Bare B.B. 1996. Distance-dependent and distanceindependent models of Douglas-fir and western hemlock basal area growth following silvicultural treatment. For. Ecol. Manage. 89: 1–11.CrossRefGoogle Scholar
  36. Wyckoff P.H. and Clark J.S. 2000. Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches. Can. J. For. Res. 30: 156–167.CrossRefGoogle Scholar
  37. Wykoff W.R. 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Sci. 36: 1077–1104.Google Scholar
  38. Zhao D., Borders B., Wilson M., and Rathbun S.L. 2006. Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest. Ecol. Model. 196: 90–102.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Thomas Perot
    • 1
  • François Goreaud
    • 2
  • Christian Ginisty
    • 1
  • Jean-François Dhôte
    • 3
  1. 1.Unité Ecosystèmes ForestiersCemagrefNogent-sur-VernissonFrance
  2. 2.Cemagref, LISCAubière Cedex 1France
  3. 3.Laboratoire d’Étude des Ressources Forêt BoisUMR INRA-ENGREF 1092, Centre INRA de NancyChampenouxFrance

Personalised recommendations