Annals of Forest Science

, Volume 67, Issue 4, pp 410–410 | Cite as

Heartwood and sapwood allometry of seven Chinese temperate tree species

  • Xingchang Wang
  • Chuankuan WangEmail author
  • Quanzhi Zhang
  • Xiankuai Quan
Original Article


  • • Allometry of sapwood/heartwood is essential for understanding tree growth, water transport and carbon allocation, timber production and use, but such an allometry is lacking for Chinese temperate tree species.

  • • We studied the allometry and development of heartwood and sapwood for seven Chinese temperate tree species: Korean pine (Pinus koraiensis Sieb. et Zucc), Dahurian larch (Larix gmelinii Rupr.), Japanese elm (Ulmus davidiana Planch var. japonica (Rehd.) Nakai), Manchurian ash (Fraxinus mandshurica Rupr.), Manchurian walnut (Juglans mandshurica Maxim.), Amur cork-tree (Phellodendron amurense Rupr.), and Mongolian oak (Quercus mongolica Fisch.).

  • • All heartwood parameters investigated, including heartwood radius (HR), heartwood formation rate (HFR), heartwood ring number (HRN), heartwood initiation age (HIA), and heartwood volume ratio (HVR), were positively correlated with tree cambial age (CA). The HR, sapwood width (SW), sapwood area (SA), heartwood and sapwood volumes were significantly related to stem diameter at breast height (DBH) or xylem diameter. There was a polynomial relationship between the sapwood ring longevity (SRL) and sapwood ring number (SRN). However, most of the allometric relationships were species-dependent. The hardwood formation patterns were different between coniferous and broadleaved tree species. A power function was suitable to scale SA from DBH, but the exponent varied from 1.32 for the larch to 2.19 for the cork-tree.

  • • Our allometry provided a practical means to assess wood development and related physiology for the temperate tree species.


allometric equation heartwood formation sapwood area wood development 

Allométrie du bois de cœur et de l’aubier pour sept espèces d’arbres tempérées chinoises


  • • L’allométrie de l’aubier/bois de cœur est essentielle pour comprendre la croissance de l’arbre, le transport de l’eau et l’allocation, la production et l’usage du bois, mais cette allométrie est manquante pour les espèces d’arbres chinoises de milieu tempéré.

  • • Nous avons étudié l’allométrie et le développement du bois de coeur et de l’aubier pour sept espèces d’arbres tempérées chinoises : le pin de Corée (Pinus koraiensis Sieb. et Zucc), le mélèze de Dahurie (Larix gmelinii Rupr.), l’orme du Japon (Ulmus davidiana Planch var. japonica (Rehd.) Nakai), le frêne de Mandchourie (Fraxinus mandshurica Rupr.), le noyer de Mandchourie (Juglans mandshurica Maxim.), le phellodendron de l’Amur (Phellodendron amurense Rupr.), et le chêne de Mongolie (Quercus mongolica Fisch.).

  • • Les paramètres du bois de coeur étudiés sont le rayon (HR), le taux de formation (HFR), l’âge d’initiation (HIA) et le ratio du volume (HVR) : ils sont corrélés positivement à l’âge cambial (CA). Le rayon du bois de cœur (HR), la largeur d’aubier (SW), la surface d’aubier (SA), les volumes de bois de cœur et d’aubier sont significativement liés au diamètre à hauteur de poitrine (DBH). Il y a une relation polynomiale entre la durée de vie des cernes d’aubier (SRL) et le nombre de cernes (SRN). Cependant la plus part des relations allométriques dépendent des espèces. Le patron de formation du bois de cœur diffère entre résineux et feuillus. Une fonction puissance est adaptée pour calibrer les variations de SA à partir de DBH mais l’exposant varie de 1,32 pour le mélèze à 2,19 pour le phellodendron de l’Amur.

  • • Pour les essences d’arbres tempérées, notre allométrie fournit un moyen pratique pour estimer le développement du bois en tenant compte de la physiologie qui y est associée.


équations d’allométrie formation du bois de cœur surface d’aubier développement du bois 


  1. Björklund L., 1999. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva. Fenn. 33: 119–129.Google Scholar
  2. Carrodus B.B., 1972. Variability in proportion of heartwood formed in woody stems. New Phytol. 71: 713–718.CrossRefGoogle Scholar
  3. Climent J., Chambel M.R., Gil L., and Pardos J.A., 2003. Vertical heart-wood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For. Ecol. Manage. 174: 203–211.CrossRefGoogle Scholar
  4. Damesin C., Ceschia E., Le Goff N., Ottorini J.M., and Dufrene E., 2002. Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytol. 153: 159–172.CrossRefGoogle Scholar
  5. Enquist B.J., 2002. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22: 1045–1064.PubMedGoogle Scholar
  6. Hacke U.G. and Sperry J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4: 97–115.CrossRefGoogle Scholar
  7. Hacke U.G., Sperry J.S., Wheeler J.K., and Castro L., 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26: 689–701.PubMedGoogle Scholar
  8. Hazenberg G. and Yang K.C., 1991. The relationship of tree age with sapwood and heartwood width in black spruce, Picea mariana (Mill) B.S.P. Holzforschung 45: 317–320.CrossRefGoogle Scholar
  9. Hoch G., Richter A., and Körner C., 2003. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26: 1067–1081.CrossRefGoogle Scholar
  10. Knapic S. and Pereira H., 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 210: 81–89.CrossRefGoogle Scholar
  11. Knapic S., Tavares F., and Pereira H., 2006. Heartwood and sapwood variation in Acacia melanoxylon R. Br. trees in Portugal. Forestry 79: 371–380.CrossRefGoogle Scholar
  12. Longuetaud F., Mothe F., Leban J.-M., and Mäkelä A., 2006. Picea abies sapwood width: Variations within and between trees. Scand. J. For. Res. 21: 41–53.CrossRefGoogle Scholar
  13. Mäkelä A., 2002. Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol. 22: 891–905.PubMedGoogle Scholar
  14. Meinzer F.C., Bond B.J., Warren J.M., and Woodruff D.R., 2005. Does water transport scale universally with tree size? Funct. Ecol. 19: 558–565.CrossRefGoogle Scholar
  15. Meinzer F.C., Clearwater M.J., and Goldstein G., 2001. Water transport in trees: current perspectives, new insights and some controversies. Environ. Exp. Bot. 45: 239–262.PubMedCrossRefGoogle Scholar
  16. Miranda I., Gominho J., Lourenço A., and Pereira H., 2006. The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Can. J. For. Res. 36: 2675–2683.CrossRefGoogle Scholar
  17. Morais M.C. and Pereira H., 2007. Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulpwood production. Ann. For. Sci. 64: 665–671.CrossRefGoogle Scholar
  18. Nawrot M., Pazdrowski W., and Szymanski M., 2008. Dynamics of heart-wood formation and axial and radial distribution of sapwood and heartwood in stems of European larch (Larix decidua Mill.). J. For. Sci. 54: 409–417.Google Scholar
  19. Ogle K. and Pacala S.W., 2009. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiol. 29: 587–605.PubMedCrossRefGoogle Scholar
  20. Pérez Cordero L.D. and Kanninen M., 2003. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva. Fenn. 37: 45–54.Google Scholar
  21. Pinto I., Pereira H., and Usenius A., 2004. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees — Struct. Funct. 18: 284–294.CrossRefGoogle Scholar
  22. Pruyn M.L., Harmon M.E., and Gartner B.L., 2003. Stem respiratory potential in six softwood and four hardwood tree species in the central cascades of Oregon. Oecologia 137: 10–21.PubMedCrossRefGoogle Scholar
  23. Sellin A., 1994. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies. Can. J. For. Res. 24: 1022–1028.CrossRefGoogle Scholar
  24. Sprugel D.G., 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210.CrossRefGoogle Scholar
  25. Taylor A.M., Gartner B.L., and Morrell J.J., 2002. Heartwood formation and natural durability — A review. Wood Fiber Sci. 34: 587–611.Google Scholar
  26. Wang C.K., 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manage. 222: 9–16.CrossRefGoogle Scholar
  27. Wullschleger S.D., Meinzer F.C., and Vertessy R.A., 1998. A review of whole-plant water use studies in trees. Tree Physiol. 18: 499–512.PubMedGoogle Scholar
  28. Yang K.C. and Hazenberg G., 1991a. Relationship between tree age and sapwood/heartwood width in Populus tremuloides Michx. Wood Fiber Sci. 23: 247–252.Google Scholar
  29. Yang K.C. and Hazenberg G., 1991b. Sapwood and heartwood width relationship to tree age in Pinus banksiana. Can. J. For. Res. 21: 521–525.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Xingchang Wang
    • 1
  • Chuankuan Wang
    • 1
    Email author
  • Quanzhi Zhang
    • 1
  • Xiankuai Quan
    • 1
  1. 1.College of ForestryNortheast Forestry UniversityHarbinChina

Personalised recommendations