Annals of Forest Science

, Volume 67, Issue 4, pp 411–411 | Cite as

The importance of canopy-derived dissolved and particulate organic matter (DOM and POM) — comparing throughfall solution from broadleaved and coniferous forests

  • Anne Le MellecEmail author
  • Henning Meesenburg
  • Beate Michalzik
Original Article


  • • Dissolved organic matter (DOM) and its main constituents carbon (DOC) and nitrogen (DON) represent an important part of the C and N cycles in forest ecosystems. Although many investigations have been addressing this issue, the knowledge on particulate organic matter (0.45 μm < POM < 500 μm) dynamics, its origin and involvement in organic matter cycling in forest ecosystems is still imperfect.

  • • In this paper, we report on dissolved and particulate organic carbon and nitrogen fractions in throughfall solutions collected from a broadleaved and coniferous forest stand in Central Germany. Over a period of 2.5 y (2005–2007) we followed the concentrations and fluxes of DOM and POM at a mature beech (Fagus sylvatica L.) and a Norway spruce (Picea abies L.) forest site. Bulk and throughfall precipitation were sampled in weekly (2005) and fortnightly (2006–2007) intervals and analyzed for dissolved (< 0.45 μm, filtered) and total (< 500 μm, unfiltered) amounts of organic carbon (DOC, TOC, POC) and nitrogen (TN, DN, PON, NO3-N) species. Proportions of particulate organic C and N were determined by difference between total and dissolved fractions.

  • • Under spruce, throughfall concentrations of most C and N fractions were twice as high as under beech. At both sites, concentrations and fluxes were significantly higher during the growing than the dormant season. At the broadleaved site, 80% of the annual fluxes of the DOC and TOC and 70% of the DN and TN were released during the growing season, compared to 60% for C and N at the coniferous site. POC under beech contributes with up to 30% to TOC compared to less than 20% at the spruce site.

  • • We suggest that pollen deposition, insect excretions and accumulated organic matter mobilised by dry/wet precipitation patterns play a supreme role for the formation of DOM and POM in forest canopies. The study demonstrates that the canopy is an important source for POM. Dynamics of DOM and POM are mainly driven by tree species effects and seasonality as well as by biotic agents.


dissolved organic matter (DOM) particulate organic matter (POM) throughfall fluxes and concentrations temperate forests 

L’importance des dérivés dissous et des particules de matière organique (DOM et POM) de la canopée — comparaison des solutions des précipitations par égouttement sous les couverts des forêts feuillues et des conifères


  • • La matière organique dissoute (DOM) et ses principaux constituants carbonés (DOC) et l’azote (DON) représentent une part importante des cycles du carbone et de l’azote dans les écosystèmes forestiers. Bien que de nombreuses enquêtes se soient penché sur ce problème, les connaissances sur les dynamiques des particules de matière organique (0,45 μm < POM < 500 μm), leur origine et leur rôle dans les cycles de la matière organique dans les écosystèmes forestiers sont encore imparfaites.

  • • Dans ce papier, nous présentons un rapport sur les particules de carbone organique et les fractions d’azote dissoutes dans les solutions de pluie arrivant directement au sol sous le couvert, récoltées dans un peuplement forestier feuillu et dans un peuplement de conifères en Allemagne centrale. Sur une période de 2,5 ans (2005–2007) nous avons suivi les concentrations et les flux de DOM et de POM dans une hêtraie arrivée à maturité (Fagus sylvatica L.) et un peuplement d’épicéa commun (Picea abies L.). Le volume des pluies et les précipitations au sol ont été échantillonnés à des intervalles de temps d’une semaine (2005) et d’une quinzaine (2006–2007) et analysés pour les quantités de carbone organique dissoutes (< 0,45 μm, filtrées) et totales (< 500 μm, non filtrées) (DOC, TOC, POC) et d’azote (TN, DN, PON, NO3-N). Les proportions des particules organiques de carbone et d’azote ont été déterminées par différence entre les fractions totales et dissoutes.

  • • Sous la pessière, les concentrations de la plupart des fractions de C et de N, dans la pluie au sol, étaient deux fois plus élevées que sous la hêtraie. Sur les deux sites, les concentrations et les flux ont été significativement plus élevés pendant la période de croissance que durant la période de dormance. Sur le site feuillu, 80 % des flux annuels de DOC et de TOC et 70 % de DN et TN ont été libérés au cours de la saison de croissance, contre 60 % pour C et N pour les conifères. Dans la hêtraie POC contribue à hauteur de 30 % de TOC, comparativement à moins de 20 % dans la pessière.

  • • Nous suggérons que les dépôts de pollen, les déjections d’insectes et la matière organique accumulée, mobilisés par les séquences de périodes sèches et de précipitations jouent un rôle suprême pour la formation des DOM et POM dans les canopées forestières. L’étude démontre que la canopée est une source importante pour POM. Les dynamiques de DOM et POM sont principalement conduites par les effets des espèces d’arbres et par la saisonnalité ainsi que par des agents biotiques.


matière organique dissoute (DOM) particules de matière organique (POM) pluie au sol par égouttement flux et concentrations forêts tempérées 


  1. Aber J.D., Nadelhoffer K.J., Steudler P., and Melillo J.M., 1989. Nitrogen satauration in northern forest ecosystems: hypotheses and implications. BioScience 39: 378–386.CrossRefGoogle Scholar
  2. Berg B. and Meentemeyer V., 2002. Litter quality in a north European transect versus carbon storage potential. Plant Soil 242: 83–92.CrossRefGoogle Scholar
  3. Carlisle A., Brown A.H.F., and White E.J., 1966. Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak (Quercus petraea) woodland. J. Ecol. 54: 65–85.CrossRefGoogle Scholar
  4. Chang S.-C. and Matzner E., 2000. The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol. Process. 14: 135–144.CrossRefGoogle Scholar
  5. Currie W.S., Aber J.D., McDowell W.H., Boone R.D., and Magill A.H., 1996. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35: 471–505.CrossRefGoogle Scholar
  6. De Schrijver A.D., Geudens G., Augusto L., Staelens J., Mertens J., Wuyts K., Gielis L., and Verheyen K., 2007. The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153: 663–674.PubMedCrossRefGoogle Scholar
  7. Draaijers G.P.J. and Erisman J.W., 1995. A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut. 85: 2253–2258.CrossRefGoogle Scholar
  8. Ellenberg H., Mayer R., and Schauermann J., 1986. Ökosystem-forschung-Ergebnisse des Sollingprojektes. Ulmer Verlag, Stuttgart.Google Scholar
  9. Finzi A.C., Canham C.D., and v. Breemen N., 1998. Canopy tree-soil interactions within temperate forests. Ecol. Appl. 8: 447–454.Google Scholar
  10. Hagedorn F., van Hees P.A.W., Handa, I.T., and Hättenschwiler, S., 2008. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochem. Cycles 22. DOI: 10.1029/2007GB003026/.Google Scholar
  11. Hosker R.P. Jr. and Lindberg S.E., 1981. Review: atmospheric deposition and plant assimilation of gases and particles. Atmosph. Environ. 16: 889–910.CrossRefGoogle Scholar
  12. Ibrom A. 1993. Die Deposition und die Pflanzenauswaschung (Leaching) von Pflanzennährstoffen in einem Fichtenbestand im Solling, Forschungszentrum Waldökosysteme, Reihe A, Bd. 105.Google Scholar
  13. Kinkel L.L., 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35: 327–347.PubMedCrossRefGoogle Scholar
  14. Lamersdorf N.P. and Blank K., 1995. Evaluation of fine material input with throughfall for a spruce forest in Solling, FRG, by means of a roof construction. In: Jenkins A., Ferrier R.C., Kirby C. (Eds.), Ecosystem manipulation experiments: scientific approaches, experimental design and relevant results, Ecosystem Research Report 20, Commission of the European Communities.Google Scholar
  15. Le Mellec A. and Michalzik B., 2008. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can. J. For. Res. 38: 1829–1849.CrossRefGoogle Scholar
  16. Levia Jr., D.F. and Frost E.E., 2006. Variability of throughfall volume and solute inputs in wooded ecosystems. Progr. Phys. Geogr. 30: 605–632.CrossRefGoogle Scholar
  17. Lichter J., Lavine M., Mace K.A., Richter D.D., and Schlesinger W.H., 2000. Throughfall chemistry in a loblolly pine plantation under elevated atmospheric CO2 concentrations. Biogeochemistry 50: 73–93.CrossRefGoogle Scholar
  18. Lovett G.M. and Lindberg S.E., 1993. Atmospheric deposition and canopy interactions of nitrogen in forests. Can. J. For Res. 23: 1603–1616.CrossRefGoogle Scholar
  19. Manderscheid B. and Matzner E., 1995. Spatial heterogeneity of soil solution chemistry in a mature Norway spruce (Picea abies (L.) Karst.) stand. Water Air Soil Pollut. 85: 1185–1190.CrossRefGoogle Scholar
  20. Matzner E. and Meiwes K.J., 1994. Long-term development of element fluxes with bulk precipitation and throughfall in two German forests. J. Environ. Qual. 23: 162–166.CrossRefGoogle Scholar
  21. Meesenburg H. and Brumme R., 2009. General Description of the Study site. In: Functioning and Management of European Beech Ecosystems, Ecological Studies 2008, Springer Verlag, Berlin, Heidelberg.Google Scholar
  22. Mercier J. and Lindow S.E., 2000. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66: 369–374.PubMedCrossRefGoogle Scholar
  23. Michalzik M., Kalbitz K., Park J.H., Solinger S., and Matzner E., 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen — a synthesis for temperate forests. Biogeochemistry 52: 173–205.CrossRefGoogle Scholar
  24. Panferov O., Kreilein H., Meesenburg H., Eichhorn J., and Gravenhorst G., 2010. Climate at three beech forest sites in Central Germany, In: Brumme R. and Alphei J. (Eds.), Human impacts on carbon and nitrogen cycles in temperate beech forests, Ecological Series, Springer, Berlin/New York, Germany (in print).Google Scholar
  25. Prescott C.E., 2002. The influence of forest canopy on nutrient cycling. Tree Physiol. 22: 1193–1200.PubMedGoogle Scholar
  26. Rennenberg H. and Gessler A., 1999. Consequences of N deposition to forest ecosystems — recent results and future reserach needs. Water Air Soil Pollut. 116: 47–64.CrossRefGoogle Scholar
  27. Rothe A., Huber C., Kreutzer K., and Weis W., 2002. Deposition and soil leaching in stands of Norway spruce and European Beech: results from the Höglwald research in comparison with other European case studies. Plant Soil 240: 33–45.CrossRefGoogle Scholar
  28. Schipka F., Heimann J., and Leuschner C., 2005. Regional variation in canopy transpiration of Central European beech forests. Oecologia 143: 260–270.PubMedGoogle Scholar
  29. Seiler J. and Matzner E., 1995. Spatial variability of throughfall chemistry and selected soil properties as influenced by stem distance in a mature Norway spruce (Picea abies (L.) Karst.) stand. Plant Soil 176: 139–147.CrossRefGoogle Scholar
  30. Stadler B. and Müller T., 2000. Effects of aphids and moth caterpillars on epiphytic micro-organisms in canopies of forest trees. Can. J. For. Res. 30: 631–638.CrossRefGoogle Scholar
  31. Sollins P., Grier C.C., McCorison F.M., Cromack Jr. K., Fogel R., and Fredriksen R.L., 1980. The internal element cycles of an old-growth Douglas-fir ecosystem in Western Oregon. Ecol. Monogr. 50: 261–285.CrossRefGoogle Scholar
  32. Weseley M.L., 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 23: 1293–1304.CrossRefGoogle Scholar
  33. Watanabe, M., Takamatsu T., Koshikawa M.K., Yamamura S., and Inubushi K., 2008. Dry deposition of acidic air pollutants to tree leaves, determined by a modified leaf-washing technique. Atmos. Environ. 42: 7339–7347.CrossRefGoogle Scholar
  34. Wright R.F., Alewell C., Cullen J.M., Evans C.D., Marchetto A., Moldan A., Prechtel A., and Rogora M., 2001. Trends in nitrogen deposition and leaching in acid-sensitive strams in Europe. Hydrol. Earth Syst. Sci. 5: 299–310.CrossRefGoogle Scholar
  35. Zhang G., Zeng G.M., Jiang Y.M., Huang G.H., Li J.B., Yao J.M., Tan W., Xiang R.J., and Zhang X.L., 2006. Modelling and measurement of two layer-canopy interception losses in a subtropical evergreen forest of south-central China. Hydrol. Earth Syst. Sci. 10: 65–77.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Anne Le Mellec
    • 1
    Email author
  • Henning Meesenburg
    • 2
  • Beate Michalzik
    • 3
  1. 1.Geographical InstituteSection Landscape EcologyGöttingenGermany
  2. 2.Northwest German Forest Research Station, Department Environmental ControlNW-FVAGöttingenGermany
  3. 3.Institute of Geography, Chair in Soil ScienceFriedrich-Schiller-University of JenaJenaGermany

Personalised recommendations