Advertisement

Annals of Forest Science

, Volume 67, Issue 3, pp 309–309 | Cite as

Morphogenetic analysis of the phenotypic variability of the architectural unit of Hydrangea macrophylla

  • Gilles Galopin
  • Jean-Claude Mauget
  • Philippe Morel
Original Article

Abstract

  • Hydrangea macrophylla is a ligneous plant that has attracted the attention of many plant breeders and agronomists for the purpose of enhancing its phenotypic plasticity. However, this plasticity was always exploited empirically.

  • • Can this plasticity be assessed by a more scientific approach? In this work, the phenotypic variation is analysed via a description of the different development sequences of the plant and by exposing the plant to different contrasted environments.

  • • The architectural unit consists of two morphogenetic units: the Vegetative Unit (VU) and the Vegetative and Floral Unit (VFU). They result in four successive development sequences: an organogenetic phase accompanied by continuous growth (sequence A), floral transformation (sequence B), dormancy (sequence C) and flower bloom (sequence D). Under the effect of environmental factors, the formation of the mixed terminal bud (sequence B) provides a considerable source of spatial variability, whereas the absence or presence of dormancy (sequence C) is responsible for a source of temporal variation.

  • • The in-depth description of the architectural unit with its morphological components and the characterisation of the four development sequences provide a necessary scientific basis to identify environmental effects on plant development and for the integrated use of its plasticity.

Keywords

Hydrangea macrophylla phenotypic variability morphogenesis organogenesis floral initiation dormancy architectural unit 

Analyse morphogénétique de la variabilité phénotypique de l’unité architecturale d’Hydrangea macrophylla

Résumé

  • Hydrangea macrophylla est une plante ligneuse présentant une grande plasticité phénotypique qui a suscité l’intérêt de nombreux sélectionneurs et agronomes. Celle-ci a cependant toujours été exploitée de façon empirique.

  • • Peut-on évaluer cette plasticité par une approche plus scientifique? Dans ce travail, la variation phénotypique est analysée par une description fine des différentes séquences de développement de la plante et par l’exposition de la plante à des environnements contrastés.

  • • L’unité architecturale est composée de deux unités de morphogenèse : l’Unité Végétative et l’Unité Végétative et Florale. Elles résultent de quatre séquences de développement successives : une phase d’organogenèse accompagnée d’une croissance continue (séquence A), la transformation florale (séquence B), la dormance (séquence C) et l’épanouissement floral (séquence D). Sous l’effet des facteurs environnementaux, la formation du bourgeon mixte terminal (séquence B) offre une source de variabilité spatiale forte alors que l’absence ou la présence d’une dormance (séquence C) est à l’origine d’une source de variation temporelle.

  • • La description fine de l’unité architecturale avec ses composantes morphologiques et la caractérisation des quatre séquences de développement est une base scientifique nécessaire pour identifier et localiser les effets de l’environnement sur le développement de la plante et pour l’exploitation raisonnée de sa plasticité.

Mots-clés

Hydrangea macrophylla variabilité phénotypique morphogenèse organogenèse initiation florale dormance unité architecturale 

References

  1. Adkins J.A., Dirr M.A., and Lindstrom O.M., 2003. Cold hardiness estimates for ten hydrangea taxa. Acta Hortic. 618: 163–168.Google Scholar
  2. Bailey D.A. and Weiler T.C., 1984. Stimulation of Inflorescence expansion in florists’ Hydrangea. J. Am. Soc. Hort. Sci. 109: 792–794.Google Scholar
  3. Bailey D.A., Weiler T.C., and Kirk T.I., 1986. Chemical stimulation of floral initiation in florists’ hydrangea. HortScience 21: 256–257.Google Scholar
  4. Bailey D.A., 1989. Hydrangea production. Growers Handbook series, Timber press, Portland, Vol. 3, 91 p.Google Scholar
  5. Bernier G., 1989. Control of floral induction and morphogenesis. C.R. Acad. Agric. Fr. 75: 3–10.Google Scholar
  6. Cameron R.W.F., Harrison-Murray R.S., Atkinson C.J., and Judd H.L., 2006. Regulated deficit irrigation — a means to control growth in woody ornamentals. J. Hortic. Sci. Biotechnol. 81: 435–443.Google Scholar
  7. Caraglio Y., 1986. Apparition du port buissonnant chez certains Ficus, Naturalia Monspeliensia, Colloque international sur l’arbre 1986, Montpellier, pp. 125–137.Google Scholar
  8. Cayeux H., 1937. L’Hortensia en culture uniflore. Revue Horticole 16: 475–476.Google Scholar
  9. Champagnat P., Barnola P., and Lavarenne S., 1986. Quelques modalités de la croissance rythmique endogène des tiges chez les végétaux ligneux. Naturalia Monspeliensia, Colloque international sur l’arbre 1986, Montpellier, pp. 279–302.Google Scholar
  10. Champagnat P., 1992. Les bourgeons et le froid: notions indispensables. In : Côme D., Le froid et les végétaux, Hermann Editeurs des sciences et des arts, Paris, pp. 179–201.Google Scholar
  11. Codarin S., Galopin G., and Chasseriaux G., 2006. Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Sci. Hortic. 108: 303–309.CrossRefGoogle Scholar
  12. Dugardin C. and Balemans L., 1991. Forcing of hydrangea with artificial supplementary lighting. Verbondsnieuws voor de Belgische Sierteelt 35: 135–137.Google Scholar
  13. Edelin C., 1986. Stratégie de réitération et édification de la cime chez les conifères. Naturalia Monspeliensia, Colloque international sur l’arbre 1986, Montpellier, pp. 139–158.Google Scholar
  14. Fuchigami L.H. and Wisniewski M., 1997. Quantifying bud dormancy: physiological approaches. HortScience 32: 618–623.Google Scholar
  15. Fulford R.M., 1965–1966. The morphogenesis of Apple buds. I–IV, Ann. Bot., 29: 167–180, 30: 25–38, 209–219, 597–606.Google Scholar
  16. Galopin G., 1995. Biologie du développement d’Hydrangea macrophylla. Caractérisation du potentiel morphogénétique et maîtrise de ses expressions par les conditions de culture. Thèse de Doct. Phys. Vég., Univ. Clermont-Ferrand, 97 p.Google Scholar
  17. Galopin G., Beaujard F., and Gendraud M., 1996. Intensive production of juvenile cuttings by mother microplant culture in Hydrangea macrophylla “Leuchtfeuer”. Can. J. Bot. 74: 561–567.CrossRefGoogle Scholar
  18. Galopin G., Codarin S., Viemont J.D., and Morel Ph., 2008. Architectural development of inflorescence in Hydrangea macrophylla cv Hermann Dienemann. HortScience 43: 361–365.Google Scholar
  19. Guedon Y., Puntieri J.G., Sabatier S., and Barthélémy D., 2006. Relative extents of preformation and neoformation in tree shoots: Analysis by a deconvolution method. Ann. Bot. 98: 835–844.PubMedCrossRefGoogle Scholar
  20. Guo Z., Goi M., Tanaka M., and Fukai S., 1995. Effects of temperature and photoperiod on the bud formation of Hydrangea. Technical bulletin of faculty of agriculture, Kagawa University 47: 23–31.Google Scholar
  21. Hallé F. and Martin R., 1968. Etude de la croissance rythmique chez l’hévéa (Hevea brasiliensis Müll.-Arg., Euphorbiacées — Crotonoïdées). Adansonia Sér. 2, 8: 475–503.Google Scholar
  22. Joustra M.K., 1989. Application of growth regulators to ornamental shrubs for use as interior decoration. Acta Hortic. 251: 359–368.Google Scholar
  23. Levy Y.Y. and Dean C., 1998. The transition to flowering. Plant Cell 10: 1973–1989.PubMedCrossRefGoogle Scholar
  24. Littlere B. and Strømme E., 1975. The influence of temperature, day length and light intensity on flowering in Hydrangea macrophylla (Thumb.) Ser. Acta Hortic. 51: 285–298.Google Scholar
  25. Morel Ph., 2001. Growth control of Hydrangea macrophylla through water restriction. Acta Hortic. 548: 51–58.Google Scholar
  26. Morita M., Iwamoto S., and Higuchi H., 1980. Interrelated effect between Thermo- and Photo-periodism on growth and development of Ornamental Woody plants V. Modification of photoperiodic response to temperature treatment in Hydrangea. J. Japan. Soc. Hort. Sci. 48: 488–494.Google Scholar
  27. Morita M. and Osuka M., 1981. Effects of gibberellin on growth and development of Hydrangea. Research Bulletin of the Aichi-Ken Agricultural Research Center. 13: 228–234.Google Scholar
  28. Orozco-Obando W., Hirsch G.N., and Wetzstein H.Y., 2005. Genotypic variation in flower induction and development in Hydrangea macrophylla. HortScience 40: 1695–1698.Google Scholar
  29. Post K., 1942. Effects of daylength and temperature on growth and flowering of some florist crops. Cornell University Agricultural Experiment Station Ithoca, New York, 787: 45–52.Google Scholar
  30. Rusch K., Leinfelder J., and Rober R., 1987. Growth retardants in Hydrangea forcing. Deutscher Gartenbau 41: 216–218.Google Scholar
  31. Sauvage G. and Chevalier C., 1943. Hydrangea et Hortensia, Monographie — Historique, culture commerciale et d’amateur. Editorial office Wauthoz-Legrand, Bruxelles, 123 p.Google Scholar
  32. Shanks J.B., Mityga H.G., and Douglass L.W., 1986. Photoperiodic responses of Hydrangea. J. Am. Soc. Hort. Sci. 111: 545–548.Google Scholar
  33. Sieben J., 1978. A great demand for smaller hydrangeas. Vakblad voor de Bloemisterij 33: 25.Google Scholar
  34. Uemachi T. and Nishio T., 2000. Inflorescence development in Hydrangea macrophylla. Acta Hortic. 515: 265–271.Google Scholar
  35. Vidalie H., 1986. Influence of various cold treatments on the reaction to forcing of miniature Hydrangea macrophylla. Acta Hortic. 181: 263–266.Google Scholar
  36. Wallerstein L., 1981. The nature of dormancy in Hydrangea macrophylla. Hassadeh 61: 1846–1848.Google Scholar
  37. Yeh D.M. and Chiang H.H., 2001. Growth and flower initiation in Hydrangea as affected by root restriction and defoliation. Sci. Hortic. 91: 123–132.CrossRefGoogle Scholar
  38. Zhou T.S. and Hara N., 1988. Development of shoot in Hydrangea macrophylla I. Terminal and axillary buds. Bot. Mag. Tokyo 101: 281–291.CrossRefGoogle Scholar
  39. Zhou T.S. and Hara N., 1989. Development of shoot in Hydrangea macrophylla II. Sequence and timing. Bot. Mag. Tokyo 102: 193–206.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Gilles Galopin
    • 1
  • Jean-Claude Mauget
    • 2
  • Philippe Morel
    • 1
  1. 1.UMR SAGAH A 462, Sciences Agronomiques Appliquées à l’Horticulture, INRAAgrocampus Ouest - Université d’AngersBeaucouzéFrance
  2. 2.UMR GenHort A 1259, INRA, Agrocampus OuestUniversité d’AngersBeaucouzéFrance

Personalised recommendations