Advertisement

Annals of Forest Science

, Volume 67, Issue 3, pp 307–307 | Cite as

Estimating growth in beech forests: a study based on long term experiments in Switzerland

  • Juan Gabriel Álvarez-GonzálezEmail author
  • Andreas Zingg
  • Klaus V. Gadow
Original Article

Abstract

  • • This contribution presents a dynamic stand growth model for Beech (Fagus sylvatica L.) forests, based on a dataset provided by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf. The dataset includes 143 research plots, covering a wide range of growing sites and providing up to 16 interval measurements per research plot.

  • • The objective of this research is to complement the range of existing beech growth models by bridging the gap between the historical yield tables and the single tree growth models. The specific aim is to develop transition functions which will project three state variables (dominant height, basal area and number of trees per hectare) at any particular time, in response to any arbitrary silvicultural treatment.

  • • Two of the transition functions were derived using the generalized algebraic difference approach (GADA), the third one was derived with the algebraic difference approach (ADA). All the functions were fitted simultaneously using iterative seemingly unrelated regression and a base-age-invariant method. The influence of thinnings on basal area growth was included by fitting different transition functions for thinned and unthinned stands.

  • • The overall model provides satisfactory predictions for time intervals up to 20 years. The new model is robust and its relatively simple structure makes it suitable for economic analysis and decision support.

Keywords

thinning effect simultaneous fitting GADA Fagus sylvatica 

Estimation de la croissance dans les hêtraies : une étude basée sur des expérimentations à long terme en Suisse

Résumé

  • • Cette contribution présente un modèle dynamique de croissance des peuplements de hêtres (Fagus sylvatica L.), basé sur un ensemble de données fournies par l’Institut Fédéral Suisse de Recherche sur la Forêt, la Neige et le Paysage, WSL à Birmensdorf. L’ensemble des données comprend 143 parcelles de recherche, couvrant un large éventail de sites et fournissant jusqu’à 16 intervalles de mesures par parcelle de recherche.

  • • L’objectif de cette recherche est de compléter la gamme de modèles de croissance du hêtre existants, en jetant un pont entre les tables de production historiques et les modèles de croissance d’arbre. L’objectif spécifique est de développer des fonctions de transition qui projeterons trois variables d’état (hauteur dominante, surface terrière et nombre d’arbres par hectare) à n’importe quel moment déterminé, en réponse à n’importe quel traitement sylvicole arbitraire.

  • • Deux des fonctions de transition ont été calculées en utilisant l’approche différence algébrique généralisée (GADA), la troisième a été dérivée de l’approche différence algébrique (ADA). Toutes les fonctions ont été ajustées en utilisant simultanément une régression itérative sans lien apparent et une méthode basée sur l’invariance de l’âge. L’influence des éclaircies sur la croissance de la surface terrière a été inclue en ajustant différentes fonctions de transition pour les peuplements éclaircis et les peuplements non éclaircis.

  • • Le modèle général fournit des prédictions satisfaisantes pour des intervalles de temps jusqu’à 20 ans. Le nouveau modèle est robuste et sa structure relativement simple fait qu’il est convient pour l’analyse économique et l’aide à la décision.

Mots-clés

effet de l’éclaircie ajustement simultané GADA Fagus sylvatica 

References

  1. Álvarez-González J.G., Castedo-Dorado F., Ruiz González A.D., López Sánchez C.A., and Gadow K.V., 2004. A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (Northwestern Spain). Ann. For. Sci. 61: 439–448.CrossRefGoogle Scholar
  2. Álvarez-González J.G., Ruiz González A.D., Rodríguez Soalleiro R., and Barrio Anta M., 2005. Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain). Ann. For. Sci. 62: 115–127.CrossRefGoogle Scholar
  3. Amateis R.L., 2000. Modeling response to thinning in loblolly pine plantations. South. J. Appl. For. 24: 17–22.Google Scholar
  4. Badoux E., 1983. Ertragstafeln Buche. Eidg. Amt. Forstl. Versuchswes., 3rd ed.Google Scholar
  5. Bailey R.L. and Clutter J.L., 1974. Base-age invariant polymorphic site curves. For. Sci. 20: 155–159.Google Scholar
  6. Barrio Anta M., Castedo Dorado F., Diéguez-Aranda U., Álvarez González, J.G., Parresol B.R., and Rodríguez R., 2006. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can. J. For. Res. 36: 1461–1474.CrossRefGoogle Scholar
  7. Bertalanffy L.V., 1957. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32: 217–231.CrossRefGoogle Scholar
  8. Bolte A., Czajkowski T., and Kompa T., 2007. The north-eastern distribution range of European beech — a review. Forestry 80: 413–429.CrossRefGoogle Scholar
  9. Castedo-Dorado F., Diéguez-Aranda U., and Álvarez-González J.G., 2007a. A growth model for Pinus radiata D. Don stands in north-western Spain. Ann. For. Sci. 64: 453–465.CrossRefGoogle Scholar
  10. Castedo-Dorado F., Diéguez-Aranda U., Barrio Anta M., and Álvarez-González J.G., 2007b. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann. For. Sci. 64: 609–619.CrossRefGoogle Scholar
  11. Cieszewski C.J., 2002. Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. For. Sci. 48: 7–23.Google Scholar
  12. Cieszewski C.J., 2003. Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/ (c + xm_1), a simplified mixed-model and scant subalpine fir data. For. Sci. 49: 539–554.Google Scholar
  13. Cieszewski C.J. and Bailey R.L., 2000. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For. Sci. 46: 116–126.Google Scholar
  14. Cieszewski C.J., Harrison M., and Martin S.W, 2000. Practical methods for estimating non-biased parameters in self-referencing growth and yield models. University of Georgia, PMRC-TR 2000-7.Google Scholar
  15. Clutter J.L. and Jones E.P., 1980. Prediction of growth after thinning in oldfield slash pine plantations, USDA For. Serv. Pap. SE-217.Google Scholar
  16. Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H., and Bailey R.L., 1983. Timber management — A quantitative approach, John Wiley & Sons, 333 p.Google Scholar
  17. Diéguez-Aranda U., Castedo-Dorado F., Álvarez González J.G., and Rodríguez-Soalleiro R., 2005. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur. J. For. Res. 124: 143–153.Google Scholar
  18. Diéguez-Aranda U., Castedo F., Álvarez González J.G., and Rojo A., 2006. Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). Ecol. Model. 191: 225–242.CrossRefGoogle Scholar
  19. Gadow K.V., 2006. Forsteinrichtung — Adaptive Steuerung und Mehrpfadprinzip. Universitätsdrucke Göttingen.Google Scholar
  20. Gadow K.V. and Pukkala T., 2008. Designing Green Landscapes. Managing Forest Ecosystems Vol. 15, Springer Verlag, Dordrecht.CrossRefGoogle Scholar
  21. García O., 1988. Growth modelling — a (re)view. N. Z. J. For. Sci. 33 (3): 14–17.Google Scholar
  22. García O., 1994. The State-Space Approach in Growth Modeling. Can. J. For. Res. 24: 1894–1903.CrossRefGoogle Scholar
  23. Gregoire T.G., Schabenberger O., and Barrett J.P., 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res. 25: 137–156.CrossRefGoogle Scholar
  24. Hallenbarter D., Hasenauer H., and Zingg A., 2005. Validierung des Waldwachstumsmodells MOSES für Schweizer Wälder. Schweiz. Z. Forstwes. 156, 5: 149–156.CrossRefGoogle Scholar
  25. Hasenauer H., Burkhart H.E., and Amateis R.L., 1997. Basal area development in thinned and unthinned loblolly pine plantations. Can. J. For. Res. 27: 265–271.CrossRefGoogle Scholar
  26. Huang S., Yang Y., and Wang Y., 2003. A critical look at procedures for validating growth and yield models. In: Amaro A., Reed D. and Soares P. (Eds.). Modelling forest systems. CAB International, Wallingford, UK, pp. 271–293.Google Scholar
  27. Hynynen J., 1995. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models. Silva Fenn. 29: 225–247.Google Scholar
  28. Knoebel B.R., Burkhart H.E., and Beck D.E., 1986. A growth and yield model for thinned stands of yellow-poplar. For. Sci. Monogr. 27.Google Scholar
  29. Korf V., 1939. Pøíspìvek k matematické definici vzrùstového zákona lesních porostù. Lesnická práce 18: 339–356.Google Scholar
  30. Kozak A. and Kozak R., 2003. Does cross validation provide additional information in the evaluation of regression models? Can J. For. Res. 33: 976–987.CrossRefGoogle Scholar
  31. Lindstrom M. and Bates D., 1990. Nonlinear mixed effects models for repeated measures data. Biometrics 46: 673–687.PubMedCrossRefGoogle Scholar
  32. Monserud R.A., 1984. Height growth and site-index curves for inland Douglas-fir based on stem analysis data and forest habitat type. For. Sci. 30: 943–965.Google Scholar
  33. Nagel J., Albert M., and Schmidt M., 2002. Das waldbauliche Prognose- und Entscheidungsmodell BWINPro 6.1. Forst Holz 57 (15/16): 486–493.Google Scholar
  34. Nord-Larsen T. and Johannsen V.K., 2007. A state-space approach to stand growth modelling of European beech. Ann. For. Sci. 64: 365–374.CrossRefGoogle Scholar
  35. Paulsen J.C., 1795. Praktische Anweisung zum Forstwesen, Detmold.Google Scholar
  36. Pienaar L.V. and Shiver B.D., 1984. An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots. For. Sci. 30: 933–942.Google Scholar
  37. Pienaar L.V., Shiver B.D., and Grider G.E., 1985. Predicting basal area growth in thinned slash pine plantations. For. Sci. 31: 731–741.Google Scholar
  38. Pretzsch H., Biber P., Ïurský J., Gadow K.V., Hasenauer H., Kändler G., Kenk G., Kublin E., Nagel J., Pukkala T., Skovsgaard J.P., Sodtke R., and Sterba, H., 2002. Recommendations for standardized documentation and further development of forest growth simulators. Forstw. Cbl. 121 (3): 138–151.CrossRefGoogle Scholar
  39. Rennolls K. and Peace A., 1986. Flow models of mortality and yield for unthinned forest stands. Forestry 59: 47–58.CrossRefGoogle Scholar
  40. Reynolds M.R., 1984. Estimating the error in model predictions. For. Sci. 30: 454–468.Google Scholar
  41. SAEFL/WSL, 2005. Forest Report 2005 — Facts and Figures about the Condition of Swiss Forests. Swiss Agency for the Environment, Forest and Landscape and Swiss Federal Research Institute, Berne/Birmensdorf.Google Scholar
  42. SAS Institute Inc., 2004. SAS/ETS1 9.1.2. User’s Guide. SAS Institute Inc., Cary, NC.Google Scholar
  43. Schmid S., Zingg A., Biber, P., and Bugmann H., 2006. Evaluation of the forest growth model SILVA along an elevational gradient in Switzerland. Eur. J. For. Res. 125: 43–55.Google Scholar
  44. Sharma M., Smith M., Burkhart H.E., and Amateis R.L., 2006. Modeling the impact of thinning on height development of dominant and codominant trees, Ann. For. Sci. 63: 349–354.CrossRefGoogle Scholar
  45. Sterba H. and Monserud, R.A., 1997. Applicability of the forest stand growth simulator Prognaus for the Austrian part of the Bohemian Massif. Ecol. Model. 98: 23–34.CrossRefGoogle Scholar
  46. Vanclay J.K., 1995. Growth models for tropical forests: a synthesis of models and methods. For. Sci. 41: 7–42.Google Scholar
  47. Woollons R.C., 1998. Even-aged stand mortality estimation through a two-step regression process, For. Ecol. Manage. 105: 189–195.CrossRefGoogle Scholar
  48. Yang Y., Monserud R.A., and Huang, S., 2004. An evaluation of diagnostic tests and their roles in validating forest biometrics models. Can. J. For. Res. 34: 619–629.CrossRefGoogle Scholar
  49. Zarnoch S.J., Feduccia D.P., Baldwin V.C., and Dell T.R., 1991. Growth and yield predictions for thinned and unthinned slash pine plantations on cutover sites in the West Gulf region. USDA Forest Service Res. Pap. SO-264.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Juan Gabriel Álvarez-González
    • 1
    Email author
  • Andreas Zingg
    • 2
  • Klaus V. Gadow
    • 3
  1. 1.Unidad de Gestión Forestal Sostenible, Departamento de Ingeniería AgroforestalUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Snow and Landscape Research WSLSwiss Federal Institute for ForestBirmensdorfSwitzerland
  3. 3.Faculty of Forest Sciences and Forest Ecology, Burckhardt-InstituteGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations