Advertisement

Annals of Forest Science

, Volume 67, Issue 2, pp 209–209 | Cite as

Impact of poplar water status on leaf-beetle (Chrysomela populi) survival and feeding

  • Sylvie La Spina
  • Jean-Claude Gregoire
  • Patrick Mertens
  • Charles De-Canniere
Original Article
  • 66 Downloads

Abstract

  • • The aim of this study is to assess the impact of drought on insect-tree relationships. Survival and feeding performances of leaf-beetles, Chrysomela populi put in cages with leaves of host-plants submitted to different levels of water stress were compared.

  • • Ninety 1-year-old poplar (Populus × euramericana) cuttings were grown in a greenhouse, and distributed into 3 groups submitted to different water treatments during six weeks. Adult C. populi were then encaged for four days with these cuttings, together with the five terminal leaves of a twig. Beetle survival and consumed leaf areas were then determined.

  • • Predawn leaf water potential values indicated that the drought treatments induced different levels of plant water stress. Plant height growth and total leaf numbers were reduced by plant stress. Beetle survival and leaf areas eaten were also reduced proportionally to plant water deficit.

  • • In conclusion, this experiment suggests that drought has a negative impact on C. populi survival and feeding.

Keywords

water deficit tree-insect relationships herbivory drought stress Populus 

Étude de l’influence d’un stress hydrique appliqué à des boutures de peuplier sur la survie et l’alimentation de chrysomèles phyllophages

Résumé

  • • L’objectif de ce travail est d’évaluer les effets d’une sécheresse sur les relations plantes-insectes. La survie et l’alimentation de chrysomèles phyllophages, Chrysomela populi, exposées à un hôte subissant divers niveaux de stress hydrique sont comparées.

  • • Quatre-vingt dix boutures de peuplier (Populus × euramericana) âgées d’un an ont été cultivées en serres, et réparties en trois groupes soumis à des traitements hydriques différents. Après un stress hydrique continu de six semaines, les boutures ont été exposées à des chrysomèles encagées avec les cinq dernières feuilles de rameaux, pour quatre jours. La survie et les surfaces foliaires consommées par les chrysomèles ont ensuite été déterminées.

  • • Les valeurs de potentiel hydrique foliaire de base indiquent que les traitements hydriques ont induit chez les plantes différents niveaux de stress hydriques. La croissance en hauteur des plantes ainsi que le nombre de feuilles ont été réduits par le stress hydrique. La survie des insectes et les surfaces foliaires consommées par ceux-ci ont également été réduites proportionnellement au déficit hydrique.

  • • En conclusion, cette expérience suggère que la sécheresse a un impact négatif sur la survie et l’alimentation de C. populi.

Mots-clés

déficit hydrique relations plantes-insectes herbivores sécheresse populus 

References

  1. Augustin S., Courtin C., and Delplanque A., 1993. Preferences of Chrysomela (= Melasoma) populi L. and Chrysomela tremulae F. (Coleoptera: Chrysomelidae) for Leuce section poplar clones. J. Appl. Entomol. 115: 370–378.CrossRefGoogle Scholar
  2. Bjorkman C., 1998. Opposite, linear and nonlinear effects of plant stress on a galling aphid. Scand. J. For. Res. 13: 177–183.CrossRefGoogle Scholar
  3. Braatne J.H., Hinckley T.M., and Stettler R.F., 1992. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoïdes and their F1 hybrids. Tree Physiol. 11: 325–339.PubMedGoogle Scholar
  4. Bradshaw H.D., Ceulemans R., Davis J., and Stettler R., 2000. Emerging model systems on plant biology: poplar (Populus) as a model forest tree. J. Growth Regul. 19: 306–313.CrossRefGoogle Scholar
  5. Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osorio M.L., Carvalho I., Faria T., and Pinheiro C., 1991. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89: 907–916.CrossRefGoogle Scholar
  6. Chen S., Wang S., Altman A., and Hüttermann A., 1997. Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol. 17: 797–803.PubMedGoogle Scholar
  7. Cochard H., Forestier S., and Ameglio T., 2001. A new validation of the Scholander pressure chamber technique based on stem diameter variations. J. Exp. Bot. 52(359): 1361–1365.PubMedCrossRefGoogle Scholar
  8. Cronin G. and Hay M.E., 1996. Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105: 361–368.CrossRefGoogle Scholar
  9. Dobbertin M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124: 319–333.Google Scholar
  10. Herms D.A. and Mattson W.J., 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67: 283–335.CrossRefGoogle Scholar
  11. Huberty A.F. and Denno R.F., 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85: 1383–1398.CrossRefGoogle Scholar
  12. IPCC, 2001. Climate change 2001. The scientific basis. Genève, IPCC, 944 p.Google Scholar
  13. Kagata H. and Ohgushi T., 2006. Nitrogen homeostasis in a willow leaf beetle, Plagiodera versicolora, is independent of host plant quality. Entomol. Exp. Appl. 118: 105–110.CrossRefGoogle Scholar
  14. Koricheva J., Larsson S., and Haukioja E., 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annu. Rev. Entomol. 43: 195–216.PubMedCrossRefGoogle Scholar
  15. Kramer P.J., 1988. Measurement of plant water status: historical perspectives and current concerns. Irrig. Sci. 9: 275–287.CrossRefGoogle Scholar
  16. Loustau D., Bosc A., Colin A., Ogée J., Davi H., François C., Dulrene E., Déqué M., Cloppet E., Arronays D., Le Bas C., Saby N., Pignard G., Hamza N., Granier A., Bréda N., Ciais P., Viovy N., and Delage F., 2005. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiol. 25: 813–823.PubMedGoogle Scholar
  17. Marron N., Delay D., Petit J.M., Dreyer E., Kahlem G., Delmotte F.M., and Brignolas F., 2002. Physiological traits of two Populus × euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle. Tree Physiol. 22: 849–858.PubMedGoogle Scholar
  18. Matsuki M. and MacLean S.F., 1994. Effects of different leaf traits on growth rates of insect herbivores on willows. Oecologia 100: 141–152.CrossRefGoogle Scholar
  19. Mattson W.J. and Haack R.A., 1987. The role of drought in outbreaks of plant-eating insects. BioScience 37: 110–118.CrossRefGoogle Scholar
  20. Meehl G.A. and Tebaldi C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st Century. Science 305: 994–997.PubMedCrossRefGoogle Scholar
  21. Price P.W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62: 244–251.CrossRefGoogle Scholar
  22. Roberts S.W., Strain B.R., and Knoerr K.R., 1980. Seasonal patterns of leaf water relations in four co-occuring forest tree species: parameters from pressure-volume curves. Oecologia 46: 330–337.Google Scholar
  23. Saxe H., Cannell M.G.R., Johnsen B., Ryan M.G., and Vourlitis G., 2001. Tree and forest functioning in response to global warming. New Phytol. 149: 369–399.CrossRefGoogle Scholar
  24. Stamp N. 2004. Can the growth-differentiation balance hypothesis be tested rigorously? Oikos 107: 439–448.CrossRefGoogle Scholar
  25. Tschaplinski T.J., Tuskan G.A., Gebre G.M., and Todd D.E., 1998. Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiol. 18: 653–658.PubMedGoogle Scholar
  26. Turner N.C., 1988. Measurement of plant water status by the pressure chamber technique. Irrig. Sci. 9: 289–308.CrossRefGoogle Scholar
  27. Van Volkenburgh E., 1999. Leaf expansion — an integrating behaviour. Plant Cell Environ. 22: 1463–1473.CrossRefGoogle Scholar
  28. White T.C.R., 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50: 905–909.CrossRefGoogle Scholar
  29. White T.C.R., 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63: 90–105.CrossRefGoogle Scholar
  30. Zlatev Z.S., 2005. Effects of water stress on leaf water relations of young bean plants. Central Eur. J. Agric. 6: 5–14.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Sylvie La Spina
    • 1
    • 2
  • Jean-Claude Gregoire
    • 1
  • Patrick Mertens
    • 3
  • Charles De-Canniere
    • 1
  1. 1.Laboratoire de Lutte biologique et Ecologie spatialeUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Fonds National de la Recherche Scientifique (F.R.S.-FNRS)Belgium
  3. 3.DG03 - Département de l’Étude du Milieu Naturel et AgricoleMinistère de la Région WallonneGemblouxBelgium

Personalised recommendations