Annals of Forest Science

, Volume 67, Issue 2, pp 208–208

DNA methylation and histone acetylation: genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity

  • Delphine Gourcilleau
  • Marie-Béatrice Bogeat-Triboulot
  • Didier Le Thiec
  • Clément Lafon-Placette
  • Alain Delaunay
  • Walid Abu El-Soud
  • Franck Brignolas
  • Stéphane Maury
Original Article

Abstract

  • • Several reports on annual plants have already shown the involvement of epigenetic modifiers such as DNA methylation in their adaptation to abiotic stresses.

  • • Nevertheless, the genotypic variations of epigenetic modifiers, their possible correlations with morphological traits and the impact of water deficit have not been described for perennial plants.

  • • Six genotypes of Populus deltoides × P. nigra were subjected or not to a moderate water deficit treatment. Various morphological traits such as the height of the plants, their biomass and the total leaf area were measured to characterize the productivity in both conditions. Levels of DNA methylation, histone acetylation and the activities and isoform accumulation of the corresponding enzymes were measured at the shoot apex, the site of morphogenesis. Genotypic variation was observed for the morphological traits and the epigenetic variables and correlations were established among them. Genotypic variation for DNA methylation was detected in hybrid poplars. A positive correlation was demonstrated between DNA methylation percentage and productivity under well watered conditions.

  • • While there was a general decrease of growth for all genotypes in response to a moderate water deficit, genotypic dependant variations of DNA methylation were found suggesting different strategies among hybrids.

Keywords

methylcytosine shoot apex vegetative development water deficit productivity 

Méthylation de l’ADN et acétylation des histones : variations génotypiques chez des peupliers hybrides, impact d’un déficit hydrique et relations avec la productivité

Résumé

  • • Plusieurs études sur des plantes annuelles ont déjà montré l’implication des modifications épigénétiques telles que la méthylation de l’ADN dans la plasticité de leurs réponses aux contraintes abiotiques.

  • • Néanmoins, les variations génotypiques de ces modifications épigénétiques, leur possible corrélation avec des variables de croissance et l’impact d’un déficit hydrique n’ont pas été décrits sur une plante pérenne.

  • • Six génotypes de Populus deltoïdes × P. nigra ont été soumis ou non à un déficit hydrique modéré et plusieurs variables de croissance ont été mesurées afin de caractériser leur productivité. Les niveaux de méthylation de l’ADN, d’acétylation des histones, les activités enzymatiques et l’accumulation des isoformes correspondantes ont été mesurés sur des apex caulinaires, site de la morphogenèse. Des variations génotypiques ont été observées pour les variables de croissance et épigénétiques. Une corrélation positive a été mise en évidence entre la méthylation de l’ADN et la productivité en condition hydrique favorable.

  • • Bien qu’il y ait une diminution générale de la croissance de tous les génotypes en réponse à un déficit hydrique modéré, des variations génotype-dépendant de la méthylation de l’ADN ont été trouvées suggérant différentes stratégies entre hybrides.

Mots-clés

apex caulinaire déficit hydrique développement végétatif méthylcytosine productivité 

References

  1. Allis C.D., Jenuwein T., Reinberg D., and Caparros M.-L., 2007. Epigenetics, Cold Spring Harbor Laboratory Press, New York, 502 p.Google Scholar
  2. Bernacchia G., Primo A., Giorgetti L., Pitto L., and Cella R., 1998. Carrot DNA methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J. 13: 317–329.PubMedCrossRefGoogle Scholar
  3. Bogeat-Triboulot M.-B., Brosche M., Renaut J., Jouve L., Le Thiec D., Fayyaz P., Vinocur B., Witters E., Laukens K., Teichmann T., Altman A., Hausman J.-F., Polle A., Kangasjärvi J., and Dreyer E., 2007. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 143: 876–892.PubMedCrossRefGoogle Scholar
  4. Bonhomme L., Barbaroux C., Monclus R., Morabito D., Berthelot A., Villar M., Dreyer E., and Brignolas F., 2008. Genetic variation in productivity, leaf traits and carbon isotope discrimination in hybrid poplars cultivated on contrasting sites. Ann. For. Sci. 65: 503.CrossRefGoogle Scholar
  5. Bonhomme L., Monclus R., Vincent D., Carpin S., Lomenech A.-M., Plomion C., Brignolas F., and Morabito D., 2009. Leaf proteome analysis of eight Populus × euramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics 9: 4121–4142.PubMedCrossRefGoogle Scholar
  6. Boyko A. and Kovalchuk I., 2007. Epigenetic control of plant stress response. Environ. Mol. Mutagen. 49: 61–72.CrossRefGoogle Scholar
  7. Braatne J.H., Hinckley T.M., and Stettler R.F., 1992. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids. Tree Physiol. 11: 325–339.PubMedGoogle Scholar
  8. Causevic A., 2005. Étude comparative de quelques paramètres du contrôle épigénétique en relation avec le développement de lignées de betterave sucrière. Thèse de doctorat. Faculté des Sciences, Université Orléans, France, 170 p.Google Scholar
  9. Causevic A., Delaunay A., Ounnar S., Righezza M., Delmotte F.M., Brignolas F., Hagège D., and Maury S., 2005. DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol. Biochem. 43: 681–691.PubMedCrossRefGoogle Scholar
  10. Causevic A., Gentil M.-V., Delaunay A., El Soud W.A., Garcia Z., Pannetier C., Brignolas F., Hagège D., and Maury S., 2006. Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet. Planta 224: 812–827.PubMedCrossRefGoogle Scholar
  11. Chen Z.J. and Tian L., 2007. Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta 1769: 295–307.PubMedGoogle Scholar
  12. Gehring M. and Henikoff S., 2007. DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta 1769: 276–286.PubMedGoogle Scholar
  13. Gentil M.-V. and Maury S., 2007. Characterization of epigenetic biomarkers using new molecular approaches. In: Varshney R. and Tuberosa R. (Eds.), Genomics-Assisted Crop Improvement: Genomics Approaches and Platforms, Springer, Dordrecht, pp. 351–377.CrossRefGoogle Scholar
  14. Kovarik A., Koukalovà B., Bezdìk M., and Opatrny Z., 1997. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor. Appl. Genet. 95: 301–306.CrossRefGoogle Scholar
  15. Labra M., Ghiani A., Citterio S., Sgorbati S., Sala F., Vannini C., Ruffini-Castiglione M., and Bracale M., 2002. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. (Stuttg.) 4: 694–699.CrossRefGoogle Scholar
  16. Loidl P., 2004. A plant dialect of the histone language. Trends Plant Sci. 9: 84–90.PubMedCrossRefGoogle Scholar
  17. Marron N., Villar M., Dreyer E., Delay D., Boudouresque E., Petit J.M., Delmotte F.M., Guehl J., and Brignolas F., 2005. Diversity of leaf traits related to productivity in 31 Populus deltoides × Populus nigra clones. Tree Physiol. 25: 425–435.PubMedGoogle Scholar
  18. Monclus R., Dreyer E., Villar M., Delmotte F.M., Delay D., Petit J.M., Barbaroux C., Le Thiec D., Bréchet C., and Brignolas F., 2006. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol. 169: 765–777.PubMedCrossRefGoogle Scholar
  19. Pavlopoulou A. and Kossida S., 2007. Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics 90: 530–541.PubMedCrossRefGoogle Scholar
  20. Pipal A., Goralik-Schramel M., Lusser A., Lanzanova C., Sarg B., Loidl A., Lindner H., Rossi V., and Loidl P., 2003. Regulation and processing of maize histone deacetylase Hda1 by limited proteolysis. Plant Cell. 15: 1904–1917.PubMedCrossRefGoogle Scholar
  21. Plomion C., Lalanne C., Claverol S., Meddour H., Kohler A., Bogeat-Triboulot M.-B., Barre A., Le Provost G., Dumazet H., Jacob D., Bastien C., Dreyer E., de Daruvar A., Guehl J.-M., Schmitter J.-M., Martin F., and Bonneu M., 2006. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6: 6509–6527.PubMedCrossRefGoogle Scholar
  22. Riddle N.C. and Richards E.J., 2002. The control of natural variation in cytosine methylation in Arabidopsis. Genetics 162: 355–363.PubMedGoogle Scholar
  23. Roden J., van Volkenburgh E., and Hinckley T.M., 1990. Cellular basis for limitation of poplar leaf growth by water deficit. Tree Physiol. 6: 211–219.PubMedGoogle Scholar
  24. Sabbah S., Raise M., and Tal M., 1995. Methylation of DNA in NaCl-adapted cells of potato. Plant Cell Rep. 14: 467–470.CrossRefGoogle Scholar
  25. Sridha S. and Wu K., 2006. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 46: 124–133.PubMedCrossRefGoogle Scholar
  26. Tschaplinski T.J., Tuskan G.A., and Gunderson C.A., 1994. Water-stress tolerance of black and eastern cottonwood clone and four hybrid progeny. I. Growth, water relations and gas exchange. Can. J. For. Res. 24: 364–371.CrossRefGoogle Scholar
  27. Tsuji H., Saika H., Tsutsumi N., Hirai A., and Nakazono M., 2006. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol. 47: 995–1003.PubMedCrossRefGoogle Scholar
  28. Tuskan G.A. et al., 2006. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596–1604.PubMedCrossRefGoogle Scholar
  29. Vaughn M.W., Tanurdzic M., Lippman Z., Jiang H., Carrasquillo R., Rabinowicz P.D., Dedhia N., McCombie W.R., Agier N., Bulski A., Colot V., Doerge R.W., and Martienssen R.A., 2007. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biology 5: e174.PubMedCrossRefGoogle Scholar
  30. Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W.-L., Chen H., Henderson I.R., Shinn P., Pellegrini M., Jacobsen S.E., and Ecker J.R., 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126: 1189–1201.PubMedCrossRefGoogle Scholar
  31. Zhang X., Shiu S., Cal A., and Borevitz J.O., 2008. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genetics 4: e1000032. Doi:10.1371/journal.pgen.1000032.Google Scholar
  32. Zilberman D., Gehring M., Tran R.K., Ballinger T., and Henikoff S., 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics 39: 61–69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Delphine Gourcilleau
    • 1
  • Marie-Béatrice Bogeat-Triboulot
    • 2
  • Didier Le Thiec
    • 2
  • Clément Lafon-Placette
    • 1
    • 3
  • Alain Delaunay
    • 1
    • 3
  • Walid Abu El-Soud
    • 4
  • Franck Brignolas
    • 1
    • 3
  • Stéphane Maury
    • 1
    • 3
  1. 1.Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Faculté des SciencesUniversité d’OrléansFrance
  2. 2.UMR1137 INRA-UHP Écologie et Écophysiologie Forestières, IFR 110 Génomique, EFABAINRAChampenouxFrance
  3. 3.USC2030 Arbres et Réponses aux Contraintes Hydrique et Environnementales (ARCHE)INRAOrléansFrance
  4. 4.Division of Molecular Biology, BiocenterInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations