Annals of Forest Science

, Volume 67, Issue 2, pp 207–207

Long-term decrease of organic and inorganic nitrogen concentrations due to pine forest wildfire

  • Jorge Durán
  • Alexandra Rodríguez
  • José María Fernández-Palacios
  • Antonio Gallardo
Original Article

Abstract

  • • Growing concerns about fires and the increase of fire frequency and severity due to climate change have stimulated a large number of scientific papers about fire ecology. Most researchers have focused on the short-term effects of fire, and the knowledge about the long-term consequences of fires on ecosystem nutrient dynamics is still scarce.

  • • Our aim was to improve the existing knowledge about the long-term effects of wildfires on forestlabile N concentrations. We hypothesized that fires may cause an initial decline in organic and inorganic N availability, and in the amount of microbial biomass-N; this should be followed by the recovery of pre-fire N concentrations on a long-term basis. We selected a fire chronosequence in Pinus canariensis forests on La Palma Island (Canary Islands, Spain). These forests are under low anthropogenic atmospheric deposition, and forest management is completely lacking; wildfires are therefore the only significant disturbance. Soil samples were collected during the winter and spring at 22 burned and unburned plots.

  • • Fire produced a significant decrease in microbial biomass N, mineral N and dissolved organic N. Almost 20 y after fire, pre-fire levels of N concentrations had not recovered.

  • • These results demonstrate that P. canariensis forest soils have a lower resilience against fire than expected. The magnitude of these observed changes suggests that pine forest wildfires may induce long-term (2 decades) changes in soil and in plant primary production.

Keywords

dissolved organic nitrogen labile nitrogen microbial biomass mineral nitrogen Pinus canariensis fire 

Décroissance à long terme des concentrations d’azote organique et inorganique, attribuable au feu dans une forêt de pins

Résumé

  • • Les préoccupations grandissantes au sujet des incendies, de l’augmentation de leur fréquence et de leur gravité attribuable aux changements climatiques ont stimulé la production d’un grand nombre d’articles scientifiques sur l’écologie des incendies. La plupart des chercheurs ont mis l’accent sur les effets à court terme de l’incendie, et les connaissances sur les conséquences à long terme des incendies sur la dynamique des éléments nutritifs de l’écosystème sont encore rares.

  • • Notre objectif est d’améliorer les connaissances actuelles sur les effets à long terme des incendies sur les concentrations labiles d’azote en forêt. Nous avons émis l’hypothèse que les incendies peuvent provoquer une baisse initiale de l’azote organique et de la disponibilité de l’azote inorganique, et de la quantité de biomasse microbienne azotée, ce qui devrait être suivie par la récupération des concentrations d’azote d’avant le feu sur une base de long terme. Nous avons sélectionné une chronoséquence d’incendies dans des forêts de Pinus canariensis sur l’île de La Palma (îles Canaries, Espagne). Ces forêts sont situées sous de faibles dépôts atmosphériques d’origine anthropique, et la gestion des forêts est totalement absente ; les feux de forêt sont donc les seules perturbations importantes. Des échantillons de sol ont été recueillis au cours de l’hiver et du printemps dans 22 parcelles brûlées et non brûlées.

  • • L’incendie a produit une diminution significative de la biomasse microbienne azotée, de l’azote minéral et de l’azote organique dissous. Presque 20 ans après l’incendie, les niveaux de concentrations d’azote d’avant le feu n’ont pas été récupérés.

  • • Ces résultats montrent que les sols forestiers de P. canariensis ont une résilience contre le feu plus faible que prévu. L’ampleur des changements observés suggère que les feux dans les forêts de pin peuvent induire des changements à long terme (2 décades) dans les sols et dans la production primaire des plants.

Mots-clés

azote organique dissous azote labile biomasse microbienne azote minéral Pinus canariensis incendie 

References

  1. Allen S.E., Grimshaw H.M., and Rowland A.P., 1986. Chemical analysis. In: Moore P.D. and Chapman S.B. (Eds.), Methods in Plant Ecology, Blackwell Scientific, Oxford, pp. 285–344.Google Scholar
  2. Brookes P.C., Powlson D.S., and Jenkinson D.S., 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14: 319–329.CrossRefGoogle Scholar
  3. Cabrera M.L. and Beare M.H., 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. Am. J. 57: 1007–1012.CrossRefGoogle Scholar
  4. Carreira J.A., Niell F.X., and Lajtha K., 1994. Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional stage. Biogeochemistry 26: 189–209.CrossRefGoogle Scholar
  5. Certini G., 2005. Effects of fire on properties of forest soils: a review. Oecologia. 143: 1–10.PubMedCrossRefGoogle Scholar
  6. Chorover J., Vitousek P.M., Everson D.A., Esperanza A.M., and Turner D., 1994. Solution chemistry profiles of mixed-conifer forests before and after fire. Biogeochemistry 26: 115–144.CrossRefGoogle Scholar
  7. Christou M., Avramides E.J., and Jones D.L., 2006. Dissolved organic nitrogen DeBano L.F. and Conrad C.E., 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59: 489–497.Google Scholar
  8. D’Elia C.F., Steudler P.A., and Corwin N., 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22: 760–764.CrossRefGoogle Scholar
  9. Dumontet S., Dinel H., Scopa A., Mazzatura A., and Saracino A., 1996. Post-fire soil microbial biomass and nutrient content of a pine forest soil from a dunal Mediterranean environment. Soil Biol. Biochem. 28: 1467–1475.CrossRefGoogle Scholar
  10. Fernandes P.A.M., Loureiro C.A., and Botelho H.S., 2004. Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann. For. Sci. 61: 537–544.CrossRefGoogle Scholar
  11. Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., and Sutton M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.PubMedCrossRefGoogle Scholar
  12. González J.R., Palahí M., Trasobares A., and Pukkala T., 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. For. Sci. 63: 169–176.CrossRefGoogle Scholar
  13. Grogan P., Burns T.D., and Chapin III F.S., 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122: 537–544.CrossRefGoogle Scholar
  14. Hernández T., García C., and Reinhardt I., 1997. Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biol. Fertil. Soils 25: 109–116.CrossRefGoogle Scholar
  15. Jones D.L. and Kielland K., 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol. Biochem. 34: 209–219.CrossRefGoogle Scholar
  16. Keeley J.E. and Zedler P.J., 1978. Reproduction of chaparral shrubs after fire: a comparison of sprouting and seeding strategies. Am. Midl. Nat. 99: 142–161.CrossRefGoogle Scholar
  17. Kranabetter J.M., Dawson C.R., and Dunn D.E., 2007. Indices of dissolved organic nitrogen, ammonium and nitrate across productivity gradients of boreal forests. Soil Biol. Biochem. 39: 3147–3158.CrossRefGoogle Scholar
  18. Kutiel P. and Naveh Z., 1987. The effect of fire on nutrients in a pine forest soil. Plant Soil 104: 269–274.CrossRefGoogle Scholar
  19. Legout A., Walter C., and Nys C., 2008. Spatial variability of nutrient stocks in the humus and soils of a forest massif (Fougères, France). Ann. For. Sci. 65: 108.CrossRefGoogle Scholar
  20. Mabuhay J., Nakagoshi N., and Horikosh T., 2003. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res. 18: 431–441.CrossRefGoogle Scholar
  21. Palese A.M., Giovannini G., Lucchesi S., and Perucci P., 2004. Effect of fire on soil C, N and microbial biomass. Agronomie 24: 47–53.CrossRefGoogle Scholar
  22. Pappa A.A., Tzamtzis N.E., and Koufopoulou S.E., 2008. Nitrogen leaching from a forest soil exposed to fire retardant with and without fire: a laboratory study. Ann. For. Sci. 65: 210.CrossRefGoogle Scholar
  23. Prieto-Fernández A., Villar M.C., Carballas M., and Carballas T., 1993. Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an atlantic forest soil. Soil Biol. Biochem. 25: 1657–1664.CrossRefGoogle Scholar
  24. Raison R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51: 73–108.CrossRefGoogle Scholar
  25. Rambal S. and Hoff C., 1998. Mediterranean ecosystems and fire: the threats of global change. In: Moreno J.M. (Ed.), Large forest fires, Backhuys Publishers, Leiden, The Netherlands, pp. 187–213.Google Scholar
  26. Rodríguez A., Durán J., Fernández-Palacios J.M., and Gallardo A., 2009. Wildfire changes the spatial pattern of soil nutrient availability in Pinus canariensis forests. Ann. For. Sci. 66: 210.CrossRefGoogle Scholar
  27. Sims G.K., Ellsworth T.R., and Mulvaney R.L., 1995. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant. Anal. 26: 303–316.CrossRefGoogle Scholar
  28. Smithwick E.A.H., Turner M.G., Mack M.C., and Chapin III F.S.C., 2005. Postfire soil N cycling in Northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8: 163–181.CrossRefGoogle Scholar
  29. Sparling G.P., Hart P.B.S., August J.A., and Leslie D.M., 1994. A comparison of soil and microbial carbon, nitrogen, and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biol. Fertil. Soils 17: 91–100.CrossRefGoogle Scholar
  30. Vance E.D. and Nadkarni N.M., 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol. Biochem. 22: 677–684.CrossRefGoogle Scholar
  31. Vitousek P.M., Gosz J.R., Grier C.C., Melillo J.M., Reiners W.A., and Todd R.L., 1979. Nitrate losses from disturbed ecosystems. Science 204: 469–474.PubMedCrossRefGoogle Scholar
  32. Wan S., Hui D., and Luo Y., 2001. Fire-Effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol. Appl. 11: 1349–1365.CrossRefGoogle Scholar
  33. Wirth C., Schulze E.-D., Lühker B., Grigoriev S., Siry M., Hordes G., Ziegler W., Backor M., Bauer G., and Vygodskaya N.N., 2002. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242: 41–63.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Jorge Durán
    • 1
  • Alexandra Rodríguez
    • 1
  • José María Fernández-Palacios
    • 2
  • Antonio Gallardo
    • 1
  1. 1.Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
  2. 2.Departamento de EcologíaUniversidad de La LagunaLa LagunaSpain

Personalised recommendations