Advertisement

Annals of Forest Science

, Volume 67, Issue 2, pp 204–204 | Cite as

Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions

  • Augusta CostaEmail author
  • Helena Pereira
  • Manuel Madeira
Original Article

Abstract

  • • Cork oak mortality is a recurrent problem in southwestern Portugal. Despite the perception of increasingly visible damage in oak woodlands on drought-prone sites, the role of the various environmental factors in their decline is not clear.

  • • To describe the spatial patterns of cork oak (Quercus suber L.) mortality, a cork oak mortality index (MI) was determined for each landscape feature (agroforestry system, soil type, slope and aspect) using a GIS approach. To achieve this goal, a logistic regression model was formulated analyzing interactions between landscape attributes and allowing a prediction of cork oak mortality.

  • • Maximum values of MI were found in (i) shrublands and open woodlands with shrub encroachment (MI 6 and 3, respectively), where competition for soil water between tree and understory increases; and (ii) on lower slopes in the rounded hilltops and smooth hillsides or shallow soils where access to groundwater resources during summer drought is difficult.

  • • The model highlighted the importance of the agroforestry systems on cork oak mortality and may be used to identify sensitive areas where mitigation actions should be employed in a scenario of increasing drought severity in these Mediterranean ecosystems.

Keywords

Quercus suber L. oak decline remote sensing logistic regression oak mortality 

Analyse des modèles spatiaux de dépérissement du chêne dans les forêts de chêne liège dans les conditions méditerranéennes

Résumé

  • • La mortalité du chêne liège est un problème récurrent dans le sud-ouest du Portugal. Malgré la perception de dommages de plus en plus visibles dans les forêts de chênes sur les sites propices à la sécheresse, le rôle des différents facteurs environnementaux dans leur déclin n’est pas clair.

  • • Pour décrire les schémas spatiaux de la mortalité du chêne liège (Quercus suber L.), un indice de mortalité des chênes lièges (MI) a été déterminé pour chaque élément du paysage (système agroforestier, type de sol, pente et exposition) en utilisant une approche SIG. Pour atteindre cet objectif, un modèle de régression logistique a été formulé pour analyser les interactions entre les attributs du paysage et permettre une prédiction de la mortalité du chêne liège.

  • • Les valeurs maximum des MI ont été trouvées dans (i) les zones arbustives et les forêts claires avec empiètement d’arbustes (MI 6 et 3, respectivement), où la concurrence pour l’eau du sol entre les arbres et le sous-bois s’accroît ; et (ii) dans le bas des pentes du sommet des collines arrondies et les pentes douces de coteaux ou sur les sols peu profonds où l’accès aux ressources souterraines en eau est difficile en période de sécheresse estivale.

  • • Le modèle a mis en évidence l’importance des systèmes agroforestiers dans la mortalité des chêneslièges et peut être utilisé pour identifier les zones sensibles où des actions de mitigation devraient être employées dans un scénario d’augmentation de la sévérité des sécheresses dans ces écosystèmes méditerranéens.

Mots-clés

Quercus suber L. dépérissement du chêne télédétection régression logistique mortalité du chêne 

References

  1. Brasier C.M., 1996. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann. Sci. For. 53: 347–358.CrossRefGoogle Scholar
  2. Brasier C.M. and Scott J.C., 1994. European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bulletin 24(1): 221–232.CrossRefGoogle Scholar
  3. Bréda N., 2000. Water shortage as a key factor in the case of oak dieback in the Harth Forest (Alsatian plain, France) as demonstrated by dendroecological and ecophysiological study. In: Oszako T. and Delatour C., (Eds.), Recent advances on oak heath in Europe, Varsaw, Poland, pp. 157–160.Google Scholar
  4. Cabral M.T., Ferreira M.C., Moreira T., Carvalho E.C., and Diniz A.C., 1992. Diagnóstico das causas da anormal mortalidade dos sobreiros a Sul do Tejo. Scientia gerundensis 18: 205–214.Google Scholar
  5. Cabral M.T., Lopes F., and Sardinha R.M., 1993. Determinação das causas da morte do sobreiro nos concelhos de Santiago do Cacém, Grândola e Sines. Relatório Síntese. Silva Lusitana 1: 7–24.Google Scholar
  6. Cadima I.S.P., Capelo J., and Gomes A.A., 1995. Relação entre variáveis ambientais, tipos de condução dos povoamentos e a mortalidade do sobreiro nos concelhos de Sines, Grândola e Santiago do Cacém. Silva Lusitana 3(1): 85–107.Google Scholar
  7. Cardoso J.V.C., 1965. Os solos de Portugal. Sua classificação, caracterização e génese. 1 — A Sul do rio Tejo, D.G.S. A., Lisboa.Google Scholar
  8. Costa J.C., Aguiar C., Capelo J.H., Lousã M., and Neto C., 1998. Biogeografia de Portugal Continental. Quercetea 0: 5–56.Google Scholar
  9. Costa A., Pereira H., and Oliveira A.C., 2002. Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Ann. For. Sci. 59: 429–437.CrossRefGoogle Scholar
  10. Costa A., Madeira M., and Oliveira A.C., 2008. The relationship between cork oak growth patterns and soil, slope and drainage in a cork oak woodland in Southern Portugal. For. Ecol. Manage. 255: 1525–1535.CrossRefGoogle Scholar
  11. Cubera E., Montero M.J., and Moreno G., 2004. Effect of land use on soil water dynamics in dehesas of Central-Western Spain. In: Schnabel, S. and Ferreira, A. (Eds.), Sustainability of agrosilvopastoral systems — dehesas, montados, Advances in GeoEcology 37, Catena Verlag, Reiskirchen, pp. 109–123.Google Scholar
  12. David T.S., Cabral M.T., and Sardinha R.M.A., 1992. A mortalidade dos sobreiros e a seca. Finisterra XXVII: 17–24.Google Scholar
  13. David T.S., Henriques M.O., Kurz-Besson C., Nunes J., Valente F., Vaz M., Pereira J.S., Siegwolf R., Chaves M.M., Gazarini L.C., and David J.S., 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27: 793–803.PubMedGoogle Scholar
  14. DGF, 2001. Inventário Florestal Nacional, Portugal Continental — 3a Revisão 1995–1998. Direcção Geral das Florestas, Lisboa.Google Scholar
  15. DGRF, 2007. Resultados do Inventário Florestal Nacional 2005/06. Inventário Florestal Nacional. Direcção-Geral dos Recursos Florestais, Lisboa.Google Scholar
  16. Diniz A.C., 1994. Os solos do montado e aptidão suberícola nos concelhos de Grândola, Santiago do Cacém e Sines. Correlações com a morte prematura do sobreiro. Silva Lusitana 2: 247–267.Google Scholar
  17. Drobyshev I., Niklasson M., Linderson H., Sonesson K., Karlsson M., Nilsson S.G., and Lanner J., 2008. Lifespan and mortality of old oaks — combining empirical and modelling approaches to support their management in southern Sweden. Ann. For. Sci. 65: 401.CrossRefGoogle Scholar
  18. Ferreira F., 2000. The cork oak condition in Portugal. In: Oszako T. and Delatour C., (Eds.), Recent advances on oak heath in Europe, Varsaw, Poland, pp. 121–130.Google Scholar
  19. Fisher F.R. and Binkley D., 2000. Ecology and management of forest soils. 3rd ed. John Wiley & Sons, New York, USA.Google Scholar
  20. Fortin M., Bédard S., Deblois J., and Meunier S., 2008. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Ann. For. Sci. 65: 205.Google Scholar
  21. Inverno C.M.C., Manuppella G., Zbyszewski G., Pais J., and Ribeiro M.L., 1993. Carta Geológica de Portugal na escala 1: 50000-42C. Notícia explicativa da Folha 42 C Santiago do Cacém. Serviços Geológicos de Portugal, Lisboa.Google Scholar
  22. Kabrick J.M., Dey D.C., Jensen R.G., and Wallendorf M., 2008. The role of environmental factors in oak decline and mortality in Ozark Highlands. For. Ecol. Manage. 255: 1409–1417.CrossRefGoogle Scholar
  23. Kurz-Besson C., Otieno D., Vale R.L., Siegwolf R., Schmidt M., Herd A., Nogueira C., David T.S., Tenhunen J., Pereira J.S., and Chaves M., 2006. Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282: 361–378.CrossRefGoogle Scholar
  24. Moniz M., Tomaz I., Cabral M., and Basto M., 1996. Avaliação da patogenicidade de Phyphtora cinnamomi Rands em sobreiro (Quercus suber L.). Silva Lusitana 4: 79–88.Google Scholar
  25. Montero M.J., Obrador J.J., Cubera E., and Moreno G., 2004. The role of dehesa land use on tree water status in Central-Western Spain. In: Schnabel S. and Ferreira A. (Eds.), Sustainability of agrosilvopastoral systems — dehesas, montados, Advances in GeoEcollgy 37, Catena Verlag, Reiskirchen, pp. 125–136.Google Scholar
  26. Moreno G., Obrador J.J., Cubera E., and Dupraz C., 2005. Fine root distribution in dehesas of Central-Western Spain. Plant Soil 277: 153–162.CrossRefGoogle Scholar
  27. Oak S., Tainter F., Williams J., and Starkey D., 1996. Oak decline risk rating for the southeastern United States, Ann. Sci. For. 53: 721–730.CrossRefGoogle Scholar
  28. Oliveira G., Correia O.A., Marins-Loução M.A., and Catarino F.M., 1992. Water relations of cork oak (Quercus suber L.) under natural conditions. Vegetatio 99–100: 199–208.CrossRefGoogle Scholar
  29. Oszako T., 2000. Oak declines in Europe’s forest — history, causes and hypothesis. In: Oszako T. and Delatour C., (Eds.), Recent advances on oak heath in Europe, Warsaw, Poland, pp. 11–40.Google Scholar
  30. Pereira H. and Tomé M., 2004. Non-wood products: Cork Oak. In: Burley J., Evans J., and Youngquist J.A. (Eds.), Encyclopedia of Forest Sciences. Elsevier, Oxford, pp. 613–620.CrossRefGoogle Scholar
  31. Pereira J.M.C. and Santos T.N., 2003. Fire risk and burned are mapping in Portugal, DGF, Lisboa.Google Scholar
  32. Pinto-Correia T. and Mascarenhas J., 1999. Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landsc. Urban Plan. 46: 125–131.CrossRefGoogle Scholar
  33. Pinto-Correia T. and Vos W., 2004. Multifunctionality in Mediterranean landscapes — past and future. In: Jongman R. (Ed.), The new dimensions of the European landscape, Springer, Berlin, Wageningen, EU Frontis Series, pp. 135–164.CrossRefGoogle Scholar
  34. SROA, 1962. Carta de Solos de Portugal na escala 1:50 000. Folha 42C. Serviço de Reconhecimento e Ordenamento Agrário. Secretaria de Estado da Agricultura, Ministério da Economia, Lisboa.Google Scholar
  35. Sousa E., Pinto J., Santos M., Gomes A., and Bonifácio L., 2000. Association of soil macro and microelements and cork oak decline in Portugal. In: Oszako T. and Delatour C. (Eds.), Recent advances on oak heath in Europe, Warsaw, Poland, pp. 215–218.Google Scholar
  36. SPSS, 2008. SPSS 15.0 vs. for Windows. SPSS Inc., Chicago.Google Scholar
  37. Thomas F.M., Blank R., and Hartmann G. 2002. Abiotic and biotic factors ant their interactions as causes of oak decline in Central Europe. For. Pathol. 32: 277–307.Google Scholar
  38. Vacca A., 2000. Effect of land use on forest floor and soil of a Quercus suber L. forest in Gallura (Sardinia, Italy). Land Degrad. Dev. 11: 167–180.CrossRefGoogle Scholar
  39. Wargo P.M., 1996. Consequences of environmental stress on oak: predisposition to pathogens. Ann. For. Sci. 53: 359–368.CrossRefGoogle Scholar
  40. WRB, 2006. World reference base for soil resources. A framework for international classification, correlation and communication. World Soil Reports 103, 2nd ed., FAO, Rome.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  1. 1.Instituto Superior de Agronomia, Centro de Estudos FlorestaisUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations