Annals of Forest Science

, Volume 67, Issue 1, pp 105–105 | Cite as

Response to canopy opening does not act as a filter to Fagus sylvatica and Acer sp. advance regeneration in a mixed temperate forest

  • Blandine Caquet
  • Pierre Montpied
  • Erwin Dreyer
  • Daniel Epron
  • Catherine ColletEmail author
Original Article


  • • In mixed-species forest stands, large losses in tree species diversity often occur during the regeneration phase. In a former coppice-with-standards, we investigated whether the limiting stage in the recruitment process of advance regeneration is the immediate seedling response to canopy release. Experimental canopy gaps were opened and the survival and growth of advance seedlings (Fagus sylvatica, Acer pseudoplatanus, Acer campestre, Acer platanoides) growing in the gaps or under closed canopy were monitored for three years.

  • • All species responded positively and rapidly to canopy release. Survival was not affected by gap opening. Diameter increment after gap opening was similar across species, and height increment was greater for Acer platanoides and for Acer pseudoplatanus. Post-release diameter and height growth were mainly determined by pre-release seedling size. Competition from neighbouring seedlings did not affect growth in the three years following canopy opening.

  • • In the recruitment process of F. sylvatica and Acer sp. advance regeneration, the recovery from canopy release did not appear as a limiting step that would filter against some species. Pre-release size was the main factor accounting for post-release growth and is probably a major determinant of long-term seedling dominance.


canopy gap competition light acclimation shade tolerance Acer pseudoplatanus Acer campestre Acer platanoides 

La réponse à l’ouverture du couvert ne filtre pas les semis préexistants de Fagus sylvatica et Acer sp. dans une forêt mélangée tempérée


  • • Dans les peuplements mélangés, une forte réduction de la diversité spécifique a lieu au cours de la phase de régénération. Nous avons examiné dans un ancien taillis-sous-futaie dans quelle mesure la réponse immédiate des semis à l’ouverture du couvert adulte pouvait limiter le recrutement de semis préexistants. Des trouées ont été ouvertes dans le couvert, et la survie et la croissance de semis préexistants (Fagus sylvatica, Acer pseudoplatanus, Acer campestre, Acer platanoides), situés dans les trouées ou bien sous couvert fermé, ont été suivies pendant trois années.

  • • Les quatre espèces ont répondu positivement et rapidement à l’ouverture du couvert. La survie n’a pas été affectée par l’ouverture. Pour les semis dans les trouées, l’accroissement en diamètre était similaire pour les quatre espèces et l’accroissement en hauteur était plus important pour Acer platanoides et Acer pseudoplatanus. La croissance en hauteur et en diamètre après ouverture étaient principalement déterminées par les dimensions des semis avant ouverture. La compétition exercée par les semis voisins n’a pas affecté significativement la croissance dans les trois années qui ont suivi l’ouverture.

  • • La période d’acclimatation des semis aux nouvelles conditions après ouverture de la canopée n’est pas apparue comme un stade limitant le recrutement des semis préexistants de Fagus sylvatica, Acer sp., ni comme un filtre vis-à-vis de l’une des quatre espèces. Les dimensions initiales des semis constituaient le facteur principal expliquant la croissance après ouverture, et probablement un facteur explicatif important pour la dominance future des semis vis-à-vis de leurs voisins.


trouée forestière acclimatation à la lumière tolérance à l’ombre Acer pseudoplatanus Acer campestre Acer platanoides 


  1. Ammer C., Stimm B., and Mosandl R., 2008. Ontogenetic variation in the relative influence of light and belowground resources on European beech seedling growth. Tree Physiol. 28: 721–728.PubMedGoogle Scholar
  2. Aussenac G., 2000. Interactions between forest stands and microclimate: ecophysiological aspects and consequences for sylviculture. Ann. For. Sci. 57: 287–301.CrossRefGoogle Scholar
  3. Balandier P., Collet C., Miller J.H., Reynolds P.E., and Zedaker S.M., 2006. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighboring vegetation. Forestry 79: 3–27.CrossRefGoogle Scholar
  4. Beaudet M., Brisson J., Gravel D., and Messier C., 2007. Effect of a major canopy disturbance on the coexistence of Acer saccharum and Fagus grandifolia in the understorey of an old-growth forest. J. Ecol. 95: 458–467.CrossRefGoogle Scholar
  5. Bohn K.K. and Nyland R.D., 2003. Forecasting development of understory American beech after partial cutting in uneven-aged northern hardwood stands. For. Ecol. Manage. 180: 453–461.CrossRefGoogle Scholar
  6. Bourgeois L., Messier C., and Brais S., 2004. Mountain maple and balsam fir early response to partial and clear-cut harvesting under aspen stands of northern Quebec. Can. J. For. Res. 34: 2049–2059.CrossRefGoogle Scholar
  7. Brunner A., 1998. A light model for spatially explicit forest stand models. For. Ecol. Manage. 107: 19–46.CrossRefGoogle Scholar
  8. Butler Manning B., 2007. Stand structure, gap dynamics and regeneration of a semi-natural mixed beech forest on limestone in central Europea case study, Ph.D. thesis, Albert-Ludwigs-Universität, Freiburg im Bresgau, Germany, p. 253.Google Scholar
  9. Canham C.D., 1988. Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69: 786–795.CrossRefGoogle Scholar
  10. Caquet B., 2008. Réactions de semis naturels de hêtre (Fagus sylvatica L.) et d’érable sycomore (Acer pseudoplatanus L.) à l’ouverture du couvert: croissance et ajustements fonctionnels, Ph.D. thesis, Université Henri Poincaré, Nancy, France.Google Scholar
  11. Chesson P., Pacala S.W., and Neuhauser C., 2001. Environmental niches and ecosystem functioning. In: Kinzing A.P., Pacala S., and Tilman G.D. (Eds.), The functional consequences of biodiversity, Princeton University Press, Princeton, NJ, pp. 213–245.Google Scholar
  12. Clark J.S., Beckage B., Camill P., Cleveland B., Hille Ris Lambers J., Lichter J., McLachlan J., Mohan J., and Wyckoff P.H., 1999. Interpreting recruitment limitation in forests. Am. J. Bot. 86: 1–16.PubMedCrossRefGoogle Scholar
  13. Collet C. and Chenost C., 2006. Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79: 489–502.CrossRefGoogle Scholar
  14. Collet C., Piboule A., Leroy O., and Frochot H., 2008. Advance Fagus sylvatica and Acer pseudoplatanus seedlings dominate tree regeneration in a mixed broadleaved former coppice-with-standards forest. Forestry 81: 135–150.CrossRefGoogle Scholar
  15. Dalling J.W., Hubbell S.P., and Silvera K., 1998. Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. J. Ecol. 86: 674–689.CrossRefGoogle Scholar
  16. Decocq G., Aubert M., Dupont F., Bardat J., Wattez-Franger A., Saguez R., De Foucault B., Alard D., and Delelis-Dusollier A., 2005. Silviculture-driven vegetation change in a European temperate deciduous forest. Ann. For. Sci. 62: 313–323.CrossRefGoogle Scholar
  17. Gonzalez M., Deconchat M., Balent G., and Cabanettes A., 2008. Diversity of woody plant seedling banks under closed canopy in fragmented coppice forests. Ann. For. Sci. 65: 511.CrossRefGoogle Scholar
  18. Grogan J., Landis R.M., Ashton M.S., and Galvao J., 2005. Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast Para, Brazil. For. Ecol. Manage. 204: 399–412.CrossRefGoogle Scholar
  19. Grubb P.J., 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.CrossRefGoogle Scholar
  20. Hahn K., 2007. From degradation to regeneration! Studies of dead wood, gaps, flora, and regeneration in beech-dominated (Fagus sylvatica L.) forests and the application for nature-based forest management, Ph.D. thesis, Copenhagen University, Copenhagen, Denmark.Google Scholar
  21. Hein S., Collet C., Ammer C., Le Goff N., Skovsgaard J.P., and Savill P.S., 2009. A review of growth and stand dynamics of Acer pseudoplatanus L. in Europe: implications for silviculture. Forestry: 82: 361–385.CrossRefGoogle Scholar
  22. Kelly C.K. and Bowler M.G., 2002. Coexistence and relative abundance in forest trees. Nature 417: 437–440.CrossRefGoogle Scholar
  23. Kneeshaw D., Williams H., Nikinmaa E., and Messier C., 2002. Patterns of above- and below-ground response of understory conifer release 6 years after partial cutting. Can. J. For. Res. 32: 255–265.CrossRefGoogle Scholar
  24. Krasowski M.J. and Wang J.R., 2003. Aboveground growth reponses of understory Abies lasiocarpa saplings to different release cuts. Can. J. For. Res. 33: 1593–1601.CrossRefGoogle Scholar
  25. Kubota Y., Konno Y., and Hiura T., 1994. Stand structure and growth patterns of understorey trees in a coniferous forest, Taisetsuzan National Park. Northern Japan Ecological Research 9: 333–341.CrossRefGoogle Scholar
  26. Madsen P. and Hahn K., 2008. Natural regeneration in a beech-dominated forest managed by close-to-nature principles. A gap cutting based experiment. Can. J. For. Res. 38: 1716–1729.CrossRefGoogle Scholar
  27. Messier C., Doucet R., Ruel J.C., Claveau Y., Kelly C., and Lechowicz M.J., 1999. Functional ecology of advance regeneration in relation to light in boreal forests. Can. J. For. Res. 29: 812–823.CrossRefGoogle Scholar
  28. Modry M., Hubeny D., and Rejsek K., 2004. Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. For. Ecol. Manage. 188: 185–195.CrossRefGoogle Scholar
  29. Nagel T.A. and Diaci J., 2006. Intermediate wind disturbance in an oldgrowth beech-fir forest in southeastern Slovenia. Can. J. For. Res. 36: 629–638.CrossRefGoogle Scholar
  30. Nakashizuka T., 2001. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16: 205–210.PubMedCrossRefGoogle Scholar
  31. Örlander G. and Karlsson C., 2000. Influence of shelterwood density on survival and height increment of Picea abies advance growth. Scand. J. For. Res. 10: 20–29.CrossRefGoogle Scholar
  32. Parish R. and Antos J.A., 2005. Advanced regeneration and seedling establishment in small cutblocks in high-elevation spruce-fir forest at Sicamous Creek, southern British Columbia. Can. J. For. Res. 35: 1877–1888.CrossRefGoogle Scholar
  33. Pearson T.R.H., Burslem F.R.P., Goeriz R.E., and Dalling J.W., 2003. Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival. Oecologia 137: 456–465.PubMedCrossRefGoogle Scholar
  34. Peet R.K. and Christensen N.L., 1987. Competition and tree death. Bioscience 7: 586–595.CrossRefGoogle Scholar
  35. Petritan A.M., von Lüpke B., and Petritan I.C., 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. Eur. J. For. Res. 128: 61–74.Google Scholar
  36. Piboule A., Collet C., Frochot H., and Dhôte J.F., 2005. Reconstructing crown shape from stem diameter and tree position to supply light models. I. Algorithms and comparison of light simulations. Ann. For. Sci. 62: 645–657.CrossRefGoogle Scholar
  37. Puettmann K.J. and Ammer C., 2007. Trends in North American and European regeneration research under the ecosystem management paradigm. Eur. J. For. Res. 126: 1–9.Google Scholar
  38. R Development Core Team, 2007. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  39. Silander J.A. and Pacala S.W., 1985. Neighborhood predictors of plant performance. Oecologia 66: 256–263.Google Scholar
  40. Silvertown J., 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19: 605–611.CrossRefGoogle Scholar
  41. Stancioiu P.T. and O’Hara K.L., 2006. Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur. J. For. Res. 125: 151–162.Google Scholar
  42. Takenaka A., 2006. Dynamics of seedling populations and tree species coexistence in a forest: a simulation study. Ecol. Res. 21: 356–363.CrossRefGoogle Scholar
  43. Tanaka H., Shibata M., Masaki T., Iida S., Niiyama K., Abe S., Kominami Y., and Nakashizuka T., 2008. Comparative demography of three coexisting Acer species in gaps and under closed canopy. J. Veg. Sci. 19(1): 127-U127.CrossRefGoogle Scholar
  44. Van Calster H., Baeten L., Verheyen K., De Keersmaeker L., Dekeyser S., Rogister J.E., and Hermy M., 2008. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. For. Ecol. Manage. 256: 519–528.CrossRefGoogle Scholar
  45. Webster C.R. and Lorimer C.G., 2005. Minimum opening sizes for canopy recruitment of midtolerant tree species: a retrospective approach. Ecol. Appl. 15: 1245–1262.CrossRefGoogle Scholar
  46. Webster C.R., Nelson K., and Wangen S.R., 2005. Stand dynamics of an insular population of an invasive tree, Acer platanoides. For. Ecol. Manage. 208(1–3): 85–99.CrossRefGoogle Scholar
  47. Wright E.F., Canham C.D., and Coates K.D., 2000. Effects of suppression and release on sapling growth for 11 tree species of northern, interior British Columbia. Can. J. For. Res. 30: 1571–1580.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Blandine Caquet
    • 1
    • 2
    • 3
    • 4
  • Pierre Montpied
    • 3
    • 4
  • Erwin Dreyer
    • 3
    • 4
  • Daniel Epron
    • 3
    • 4
  • Catherine Collet
    • 1
    • 2
    Email author
  1. 1.UMR1092 LERFoBINRAChampenouxFrance
  2. 2.UMR1092 LERFoBAgroParisTechChampenouxFrance
  3. 3.UMR 1137 Écologie et Écophysiologie ForestièresINRAChampenouxFrance
  4. 4.UMR 1137 Écologie et Écophysiologie ForestiéresNancy-UniversitéVandoeuvre-les-NancyFrance

Personalised recommendations