Annals of Forest Science

, Volume 67, Issue 1, pp 102–102 | Cite as

Effects of stand density on ecosystem properties of subalpine forests in the southern Rocky Mountains, USA

Original Article

Abstract

  • • Mixed coniferous, subalpine forest communities in the Rocky Mountains are historically dense and have experienced infrequent, high-severity fire. However, many of these high-elevation stands are thinned for a number of perceived benefits.

  • • We explored the effects of forest stand density on ecosystem properties in subalpine forests in Colorado, USA, 17–18 y after forests were managed for timber.

  • • Forest structure significantly altered the composition and chemical signature of plant communities. Previously managed stands contained lower density of overstory trees and higher ground cover compared to paired reference stands. Foliar phenolic concentration of several species was negatively related to basal area of overstory trees. Furthermore, reductions in stand density increased total foliar phenolic:nitrogen ratios in some species, suggesting that gap formation may drive long-term changes in litter quality. Despite significant changes in forest structure, reductions in stand density did not leave a strong legacy in surface soil properties, likely due to the integrity of soil organic matter reserves.

  • • Changes in forest structure associated with past management has left a long-term impact on plant communities but has only subtly altered soil nutrient cycling, possibly due to trade offs between litter decomposability and microclimate associated with reductions in canopy cover.

Keywords

foliar chemistry phenolic soil nitrogen cycling stand density biogeochemistry 

Effets de la densité du peuplement sur les propriétés des écosystèmes des forêts subalpines dans le sud des Montagnes Rocheuses aux USA

Résumé

  • • Les communautés subalpines de forêts mixtes de conifères dans les Montagnes Rocheuses sont historiquement denses et ont peu connu de feux très sévères. Cependant, beaucoup de ces peuplements de haute altitude sont éclaircis pour de nombreux profits.

  • • Nous avons étudié les effets de la densité des peuplements forestiers sur les propriétés des écosystèmes dans les forêts subalpines du Colorado (USA), 17–18 ans après que les forêts aient été exploitées pour le bois.

  • • La structure de la forêt a considérablement modifié la composition et la signature chimique des communautés végétales. Auparavant les peuplements exploités renfermaient une plus faible densité d’arbres de l’étage dominant et une couverture du sol plus importante par rapport aux peuplements de référence correspondants. La concentration des composés phénoliques foliaires de plusieurs espèces a été liée négativement à la surface terrière des arbres dominants. En outre, les réductions de la densité du peuplement ont augmenté les rapports composés phénoliques foliaires totaux : azote chez certaines espèces, ce qui suggère que la formation de trouée peut conduire à des changements à long terme de la qualité de la litière. Malgré d’importants changements dans la structure forestière, la réduction de la densité du peuplement n’a pas laissé un héritage solide dans les propriétés de surface du sol, probablement à cause de l’intégrité des réserves de matière organique du sol.

  • • Les changements dans la structure de la forêt associés à la gestion passée ont laissé un impact à long terme sur les communautés végétales, mais n’ont que discrètement modifié le cycle des nutriments du sol, peut-être à cause des échanges entre les possibilités de décomposition de la litière et le microclimat associé à des réductions du couvert forestier.

Mots-clés

chimie foliaire composés phénoliques cycle de l’azote du sol densité du peuplement biogéochimie 

References

  1. Aber J.D. and Melillo J.M., 1980. Litter decomposition — measuring relative contributions of organic matter and nitrogen to forest soils. Can. J. Bot./Rev. Can. Bot. 58: 416–421.Google Scholar
  2. Aerts R. and deCaluwe H., 1997. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78: 244–260.Google Scholar
  3. Apigian K.O., Dahlsten D.L., and Stephens S.L., 2006. Fire and fire surrogate treatment effects on leaf litter arthropods in a western Sierra Nevada mixed-conifer forest. For. Ecol. Manage. 221: 110–122.Google Scholar
  4. Bartos D.L., 2000. Landscape dynamics of aspen and conifer forests. In: Shepperd W.D., Binkley D., Bartos D.L., Stohlgren T.J., Eskew L.G. (Eds.), Sustaining aspen in western landscapes: Symposium Proceedings, Grand Junction, CO, pp. 5–14.Google Scholar
  5. Bormann F.H. and Likens G.E., 1979. Pattern and process in a forested ecosystem, Springer-Verlag, New York.Google Scholar
  6. Boyle S.I., Hart S.C., Kaye J.P., and Waldrop M.P., 2005. Restoration and canopy type influence soil microflora in a ponderosa pine forest. Soil Sci. Soc. Am. J. 69: 1627–1638.CrossRefGoogle Scholar
  7. Carpenter A.T., West C.M., and Murray W., 1998. Management plan for the Catamount Ranch Open Space, Teller County, CO, 1998–2002 Teller County Division of Parks, Denver, CO, pp. 1–50.Google Scholar
  8. Chacon P. and Armesto J.J., 2006. Do carbon-based defenses reduce foliar damage? Habitat-related effects on tree seedling performance in a temperate rainforest of Chiloe Island, Chile Oecologia 146: 555–565.CrossRefGoogle Scholar
  9. Colorado Division of Forestry, 2005. The 2005 Report on the health of Colorado’s forests, Colorado Department of Natural Resources, Division of Forestry, Denver, CO, pp. 1–27.Google Scholar
  10. Colorado Forest Restoration Institute, 2006. What’s Happening in Colorado’s aspen forests? Gradual, long-term changes and recent widespread death of aspen trees. In: Binkley D. (Ed.), Colorado Forest Restoration Institute, Fort Collins, CO, pp. 1–4.Google Scholar
  11. Connaugh C., 1970. Revolt against clearcutting. J. For. 68: 264.Google Scholar
  12. Converse S.J., White G.C., Farris K.L., and Zack S., 2006. Small mammals and forest fuel reduction: national-scale responses to fire and fire surrogates. Ecol. Appl. 16: 1717–1729.PubMedCrossRefGoogle Scholar
  13. Covelo F. and Gallardo A., 2001. Temporal variation in total leaf phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain. Can. J. Bot./Rev. Can. Bot. 79: 1262–1269.Google Scholar
  14. Covington W.W., Fule P.Z., Moore M.M., Hart S.C., Kolb T.E., Mast J.N., Sackett S.S., and Wagner M.R., 1997. Restoring ecosystem health in ponderosa pine forests of the Southwest. J. For. 95: 23–29.Google Scholar
  15. Dannenmann M., Gasche R., Ledebuhr A., and Papen H., 2006. Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant Soil 287: 279–300.CrossRefGoogle Scholar
  16. Dannenmann M., Gasche R., and Papen H., 2007. Nitrogen turnover and N2O production in the forest floor of beech stands as influenced by forest management. J. Plant Nutr. Soil Sci. 170: 134–144.CrossRefGoogle Scholar
  17. Denslow J.S., Ellison A.M., and Sanford R.E., 1998. Treefall gap size effects on above- and below-ground processes in a tropical wet forest. J. Ecol. 86: 597–609.CrossRefGoogle Scholar
  18. Feller M.C., Lehmann R., and Olanski P., 2000. Influence of forest harvesting intensity on nutrient leaching through soil in Southwestern British Columbia. J. Sustain. For. 10: 241–247.Google Scholar
  19. Fettig C.J., Klepzig K.D., Billings R.F., Munson A.S., Nebeker T.E., Negron J.F., and Nowak J.T., 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manage. 238: 24–53.CrossRefGoogle Scholar
  20. Forkner R.E. and Marquis R.J., 2004. Uneven-aged and even-aged logging alter foliar phenolics of oak trees remaining in forested habitat matrix. For. Ecol. Manage. 199: 21–37.CrossRefGoogle Scholar
  21. Franklin J.F., Spies T., Perry D., Harmon M., and McKee A., 1985. Modifying Douglas-Fir management regimes for nontimber objectives In: Oliver C.D., Hanley D.P., Johnson J.A. (Eds.), Conference on Douglas-fir: stand management for the future, College of Forest Resources, University of Washington, Seattle, WA.Google Scholar
  22. Fuller T.L., Foster D.R., McLachlan T.S., and Drake N., 1998. Impact of human activity on regional forest composition and dynamics in central New England. Ecosystems 1: 76–95.CrossRefGoogle Scholar
  23. Ganjegunte G.K., Condron L.M., Clinton P.W., Davis M.R., and Mahieu N., 2004. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For. Ecol. Manage. 187: 197–211.CrossRefGoogle Scholar
  24. Gilless J.K. and Buongiorno J., 2003. Decision Methods for Forest Resource Management, Academic Press, San Diego, CA.Google Scholar
  25. Grady K.C. and Hart S.C., 2006. Influences of thinning, prescribed burning, and wildfire on soil processes and properties in southwestern ponderosa pine forests: a retrospective study. For. Ecol. Manage. 234: 123–135.CrossRefGoogle Scholar
  26. Griffin P.C. and Mills L.S., 2007. Precommercial thinning reduces snowshoe hare abundance in the short tenn. J. Wildl. Manage. 71: 559–564.CrossRefGoogle Scholar
  27. Gundale M.J., DeLuca T.H., Fiedler C.E., Ramsey P.W., Harrington M.G., and Gannon J.E., 2005. Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical and biological properties. For. Ecol. Manage. 213: 25–38.CrossRefGoogle Scholar
  28. Gundale M.J., Metlen K.L., Fiedler C.E., and DeLuca T.H., 2006. Nitrogen spatial heterogeneity influences diversity following restoration in a Ponderosa Pine Forest, Montana. Ecol. Appl. 16: 479–489.Google Scholar
  29. Gundersen P., Schmidt I.K., and Raulund-Rasmussen K., 2006. Leaching of nitrate from temperate forests — effects of air pollution and forest management. Environ. Rev. 14: 1–57.CrossRefGoogle Scholar
  30. Hagar J., Howlin S., and Ganio L., 2004. Short-term response of songbirds to experimental thinning of young Douglas-fir forests in the Oregon Cascades. For. Ecol. Manage. 199: 333–347.Google Scholar
  31. Hart S.C., DeLuca T.H., Newman G.S., MacKenzie M.D., and Boyle S.I., 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220: 166–184.CrossRefGoogle Scholar
  32. Hattenschwiler S. and Vitousek P.M., 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.PubMedCrossRefGoogle Scholar
  33. Heckenberger M.J., Kuikuro A., Kuikuro U.T., Russell J.C., Schmidt M., Fausto C., and Franchetto B., 2003. Amazonia 1492: Pristine forest or cultural parkland? Science 301: 1710–1714.PubMedCrossRefGoogle Scholar
  34. Hessl A., 2002. Aspen, elk, and fire: the effects of human institutions on ecosystem processes. Bioscience 52: 1011–1022.CrossRefGoogle Scholar
  35. Hogg E.H., Brandt J.P., and Kochtubajda B., 2005. Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Can. J. For. Res./Rev. Can. Rech. For. 35: 610–622.CrossRefGoogle Scholar
  36. Jennings S.B., Brown N.D., and Sheil D., 1999. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72: 59–73.CrossRefGoogle Scholar
  37. Jonard M., Misson L., and Ponette Q., 2006. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can. J. For. Res./Rev. Can. Rech. For. 36: 2684–2695.CrossRefGoogle Scholar
  38. Jones C.G. and Hartley S.E., 1999. A protein competition model of phenolic allocation. Oikos 86: 27–44.CrossRefGoogle Scholar
  39. Kaye J.P. and Hart S.C., 1998. Ecological restoration alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem. Ecol. Appl. 8: 1052–1060.Google Scholar
  40. Knowles R.D., Pastor J., and Biesboer D.D., 2006. Increased soil nitrogen associated with dinitrogen-fixing, terricolous lichens of the genus Peltigera in northern Minnesota. Oikos 114: 37–48.CrossRefGoogle Scholar
  41. Lajzerowicz C.C., Walters M.B., Krasowski M., and Massicotte H.B., 2004. Light and temperature differentially colimit subalpine fir and Engelmann spruce seedling growth in partial-cut subalpine forests. Can. J. For. Res. 34: 249–260.CrossRefGoogle Scholar
  42. Lindgren P.M.F., Ransome D.B., Sullivan D.S., and Sullivan T.P., 2006. Plant community attributes 12 to 14 years following precommercial thinning in a young lodgepole pine forest. Can. J. For. Res./Rev. Can. Rech. For. 36: 48–61.CrossRefGoogle Scholar
  43. Lindroth R.L. and Hwang S.Y., 1996. Diversity, redundancy, and multiplicity in chemical defense systems of aspen, In: Romeo J.T., Saunders J.A., Barbosa P. (Eds.), Phytochemical diversity and redundancy in ecological interactions, Plenum Press, New York, pp. 25–56.Google Scholar
  44. Lorena C.A., Noe V.D., Victoria C.M., Beatriz B.M., Leticia S.C., and Julia M.M., 2005. Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte Argentina. Plant Ecol. 181: 139–151.CrossRefGoogle Scholar
  45. Maassen S., Fritze H., and Wirth S., 2006. Response of soil microbial biomass, activities, and community structure at a pine stand in northeastern Germany 5 years after thinning. Can. J. For. Res./Rev. Can. Rech. For. 36: 1427–1434.CrossRefGoogle Scholar
  46. McCullough D.G., Werner R.A., and Neumann D., 1998. Fire and insects in northern and boreal forest ecosystems of North America. Annu. Rev. Entomol. 43: 107–127.PubMedCrossRefGoogle Scholar
  47. Moore B.D., Wallis I.R., Wood J.T., and Foley W.J., 2004. Foliar nutrition, site quality, and temperature influence foliar chemistry of tallowwood (Eucalyptus microcorys). Ecol. Monogr. 74: 553–568.CrossRefGoogle Scholar
  48. Moran M.D., 2003. Arguments for rejecting the sequential Bonferroni in ecological studies Oikos 100: 403–405.CrossRefGoogle Scholar
  49. Müller M.S., McWilliams S.R., Podlesak D., Donaldson J.R., Bothwell H.M., and Lindroth R.L., 2006. Tri-trophic effects of plant defenses: chickadees consume caterpillars based on host leaf chemistry. Oikos 114: 507–517.CrossRefGoogle Scholar
  50. National Research Council, 2000. Environmental issues in Pacific northwest forest management, The National Academies Press, Washington DC.Google Scholar
  51. Northup R.R., Dahlgren R.A., and McColl J.G., 1998. Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42: 189–220.CrossRefGoogle Scholar
  52. NRCS, 2006. Soil survey of Rocky Mountain National Park, Colorado, National Resources Conservation Service.Google Scholar
  53. Osier T.L. and Lindroth R.L., 2006. Genotype and environment determine allocation to and costs of resistance in quaking aspen Oecologia 148: 293–303.PubMedCrossRefGoogle Scholar
  54. Petritsch R., Hasenauer H., and Pietsch S.A., 2007. Incorporating forest growth response to thinning within biome-BGC. For. Ecol. Manage. 242: 324–336.CrossRefGoogle Scholar
  55. Powers R.F., 1989. Retrospective studies in perspective: strengths and weaknesses. In: Dyck W.J., Mees C.A. (Eds.), Research Strategies for Long-term Site Productivity: Proceedings of the IEA/BE A3 Workshop Seattle, pp. 47–62.Google Scholar
  56. Ranger J., Bonnaud P., Bouriaud O., Gelhaye D., and Picard J.F., 2008. Effects of the clear-cutting of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation on chemical soil fertility. Ann. For. Sci. 65: 303.CrossRefGoogle Scholar
  57. Ripple W.J. and Beschta R.L., 2007. Restoring Yellowstone’s aspen with wolves. Biol. Conserv. 138: 514–519.CrossRefGoogle Scholar
  58. Schoennagel T., Veblen T.T., and Romme W.H., 2004. The interaction of fire, fuels, and climate across Rocky Mountain forests. Bioscience 54: 661–676.CrossRefGoogle Scholar
  59. Sibold J.S., Veblen T.T., and Gonzalez M.E., 2006. Spatial and temporal variation in historic fire regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park, Colorado, USA. J. Biogeogr. 33: 631–647.CrossRefGoogle Scholar
  60. SPSS, 2005. SPSS 11.0 for Macintosh, SPSS, Inc., Chicago, IL.Google Scholar
  61. Stamp N., 2003. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78: 23–55.PubMedCrossRefGoogle Scholar
  62. Titus B.D., Prescott C.E., Maynard D.G., Mitchell A.K., Bradley R.L., Feller M.C., Beese W.J.B., Seely B.A., Benton R.A., Senyk J.P., Hawkins B.J., and Koppenaal R., 2006. Post-harvest nitrogen cycling in clearcut and alternative silvicultural systems in a montane forest in coastal British Columbia. For. Chron. 82: 844–859.Google Scholar
  63. Veblen T.T., Kitzberger T., and Donnegan J., 2000. Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecol. Appl. 10: 1178–1195.CrossRefGoogle Scholar
  64. Vellend M., Verheyen K., Flinn K.M., Jacquemyn H., Kolb A., Van Calster H., Peterken G., Graae B.J., Bellemare J., Honnay O., Brunet J., Wulf M., Gerhardt F., and Hermy M., 2007. Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J. Ecol. 95: 565–573.CrossRefGoogle Scholar
  65. Wang J.R., Letchford T., Comeau P.G., and Coopersmith D., 2000. Foliar responses of understorey Abies lasiocarpa to different degrees of release cutting in a Betula papyrifera and conifer mixed species stand. Scand. J. For. Res. 15: 611–620.CrossRefGoogle Scholar
  66. Weinig C., Gravuer K.A., Kane N.C., and Schmitt J., 2004. Testing adaptive plasticity to UV: costs and benefits of stem elongation and lightinduced phenolics. Evolution 58: 2645–2656.PubMedGoogle Scholar
  67. Western Regional Climate Center, 2007. Western US climate historical summaries: Ruxton Park, CO.Google Scholar
  68. Winkler R.D., Spittlehouse D.L., and Golding D.L., 2005. Measured differences in snow accumulation and melt among clearcut, juvenile, and mature forests in southern British Columbia. Hydrol. Process. 19: 51–62.CrossRefGoogle Scholar
  69. Zenner E.K., Acker S.A., and Emmingham W.H., 1998. Growth reduction in harvest-age, coniferous forests with residual trees in the western central Cascade Range of Oregon. For. Ecol. Manage. 102: 75–88.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Catamount Center for Geography of the Southern RockiesWoodland ParkUSA

Personalised recommendations