Advertisement

Annals of Forest Science

, Volume 67, Issue 1, pp 101–101 | Cite as

The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe

  • Paula Lorenzo
  • Luís González
  • Manuel J. Reigosa
Open Access
Review Article

Abstract

  • • We review current knowledge about the biology of the genus Acacia, and Acacia dealbata Link (silver wattle) in particular, as an invader in Europe, focusing on (i) the biology of the genus Acacia; (ii) biological attributes that are important for the invasiveness of the genus and A. dealbata; (iii) possible hypotheses for the invasion success; and (iv) control methods.

  • • Several Australian wattles have been recorded as naturalized in Europe. Acacia has attained pest proportions in certain habitats and protected sites (notably coastal dunes, river courses, natural parks and biosphere reserves).

  • • The spread of Acacia dealbata seems to be assisted by human interference such as soil disturbance and severe fires. The biological attributes favoring invasion by A. dealbata include tolerance of changing soil conditions, the ability to take advantage of environmental disturbance, phenotypic plasticity, vegetative reproduction, fire tolerance and allelopathic potential.

  • • Different hypotheses explaining invasiveness and transition between invasion steps related to biological attributes as the key factor for A. dealbata invasion are discussed. Effects on the biodiversity of native flora are little understood and studies of suppression of autochthonous species are needed. It is desirable that further studies comparing Acacia at field sites in their native and exotic range should be done.

  • • Understanding the biology of invasive wattles in Europe is the first step to an effective control method. Studies comparing plant invaders at field sites in their native and invaded areas seem to be most appropriate in order to be able to attack the most vulnerable stages.

Keywords

Acacia dealbata biodiversity biological attributes genus Acacia invasive species 

Le genre Acacia comme envahisseur : caractéristiques du cas Acacia dealbata Link en Europe

Résumé

  • • Nous passons en revue les connaissances actuelles sur la biologie du genre Acacia et de Acacia dealbata Link, en particulier comme un envahisseur en Europe, en mettant l’accent sur : (i) la biologie du genre Acacia ; (ii) les attributs biologiques qui sont importants pour le caractère envahissant du genre et d’A. dealbata; (iii) les hypothèses possibles pour la réussite de l’invasion et (iv) les méthodes de contrôle.

  • • Plusieurs acacias australiens ont été enregistrés comme naturalisés en Europe. Acacia a atteint la proportion de nuisible dans certains habitats et sites protégés (notamment des dunes côtières, des cours d’eau, des parcs naturels et des réserves de la biosphère).

  • • La propagation de l’Acacia dealbata semble avoir été aidée par l’intervention humaine, telle que la perturbation des sols et de graves incendies. Les attributs biologiques favorisant l’invasion par A. dealbata incluent la tolérance aux changements des conditions du sol, la capacité à tirer profit des perturbations de l’environnement, la plasticité phénotypique, la reproduction végétative, la tolérance au feu, et le potentiel allélopathique.

  • • Différentes hypothèses expliquant le caractère invasif et la transition entre les phases de l’invasion en relation avec les attributs biologiques comme facteur clé pour l’invasion d’A. dealbata sont discutées. Les effets sur la biodiversité de la flore sont mal compris et des études sur la suppression des espèces autochtones sont nécessaires. Il est souhaitable que d’autres études comparant Acacia sur le terrain dans leurs sites et dans des régions exotiques soient faites.

  • • Comprendre la biologie des espèces d’Acacia invasives en Europe est la première étape d’une méthode de contrôle efficace. Les études comparant les envahisseurs végétaux sur le terrain dans leurs sites et dans les zones envahies semblent être plus appropriées afin d’être en mesure d’attaquer les étapes les plus vulnérables.

Mots-clés

Acacia dealbata biodiversité attributs biologiques genre Acacia espèces envahissantes 

References

  1. Adams M.A. and Attiwill P.M., 1982. Nitrogen mineralization and nitrate reduction in forest. Soil. Biol. Biochem. 14: 197–202.CrossRefGoogle Scholar
  2. Aguiar F.C., Moreira I., and Ferreira M.T., 2001. Exotic and native vegetation establishment following channelization of a western Iberian river. Regul. Rivers. Res. Manage. 17: 509–526.CrossRefGoogle Scholar
  3. Almeida J.D. and Freitas H., 2006. Exotic flora of continental Portugal — a reassessment. Botanica Compluteusis 30: 117–130.Google Scholar
  4. Alpert P., Bone E., and Holzapfel C., 2000. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants. Perspective Plant Ecol. Evol. Systematics 3: 52–66.CrossRefGoogle Scholar
  5. Anwar C., 1992. The growth of shorea seedlings on soil media of several age levels of Acacia mangium stands. Bul. Penelit. Hutan 544: 9–16.Google Scholar
  6. Austin D.F., 1978. Exotic plants and their effects in southeastern Florida. Environ. Conserv. 5: 25–34.CrossRefGoogle Scholar
  7. Ball M.C., Butterworth J., Roden J.S., Christian R., and Egerton J.J.G., 1995. Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiol. 22: 311–319.CrossRefGoogle Scholar
  8. Bashir Hussain S., 1991. Some observations on the effect of forest tree species on ground vegetation at Pabbi Forest, Kharian. Pak. J. For. 41: 173–177.Google Scholar
  9. Bauhus J., van Winden A.P., and Nicotra A.B., 2004. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can. J. For. Res. 34: 686–694.CrossRefGoogle Scholar
  10. Bernhard-Reversat F., 1999. The leaching of Eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in Congolese tree plantations. Appl. Soil Ecol. 12: 251–261.CrossRefGoogle Scholar
  11. Blakesley D., Allen A., Pellny T.K., and Roberts A.V., 2002. Natural and induced polyploidy in Acacia dealbata Link and Acacia mangium Wild. Ann. Bot. 90: 391–398.CrossRefGoogle Scholar
  12. Blossey B. and Nötzold R., 1995. Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis. J. Ecol. 83: 887–889.CrossRefGoogle Scholar
  13. Broadhurst L.M. and Young A.G., 2006. Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in southeast Australia. Biol. Conserv. 133: 512–526.CrossRefGoogle Scholar
  14. Brown J., Enright N.J., and Miller B.P., 2003. Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia. Austral Ecol. 28: 271–280.CrossRefGoogle Scholar
  15. Brown J.R. and Carter J., 1998. Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland. Landsc. Ecol. 13: 93–102.CrossRefGoogle Scholar
  16. Bruno J.F., Stachowicz J.J., and Bertness, 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18: 119–125.CrossRefGoogle Scholar
  17. Callaway R.M. and Aschehoug E.T., 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521–523.PubMedCrossRefGoogle Scholar
  18. Callaway R.M. and Ridenour W.M., 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2: 436–443.CrossRefGoogle Scholar
  19. Callaway R.M., Pennings S.C., and Richards C.L., 2003. Phenotypic plasticity and interactions among plants. Ecol. 84: 1115–1128.CrossRefGoogle Scholar
  20. Carballeira A. and Reigosa M.J., 1999. Effects of natural leachates of Acacia dealbata Link in Galicia (NW Spain). Bot. Bull. Acad. Sin. 40: 87–92.Google Scholar
  21. Carr G.W., 2001. Australian plants as weeds in Victoria. Plant Prot. Q. 16: 124–125.Google Scholar
  22. Cheal D., 2002. Acacia obtusifolia — introduction and spread in native bush. Vic. Nat. 119: 231–232.Google Scholar
  23. Chou C.H., Fu C.Y., Li S.Y., and Wang Y.F., 1998. Allelopathic potential of Acacia confusa and related species in Taiwan. J. Chem. Ecol. 24: 2131–2150.CrossRefGoogle Scholar
  24. Chytrý M., Pyěk P., Wild J., Pino J., Maskell L.C., and Vilà M., 2009. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15: 98–107.CrossRefGoogle Scholar
  25. Coetzee B.W.T., van Rensburg B.J., and Robertson M.P., 2007. Invasion of grasslands by silver wattle, Acacia dealbata (Mimosaceae), alters beetle (Coleoptera) assemblage structure. Afric. Entomol. 15: 328–339.CrossRefGoogle Scholar
  26. Colautti R.I., Grigorovich I.A., and MacIsaac H.J., 2006. Propagule pressure: a null model for biological invasions Biol. Invasions 8: 1023–1037.CrossRefGoogle Scholar
  27. Cronk Q.B. and Fuller J.L., 1995. Plant invaders, Chapman and Hall, London, UK.Google Scholar
  28. Danthu P., Ndongo M., Diaou M., Thiam O., Sarr A., Dedhiou B., and et al., 2003. Impact of bush fire on germination of some West African acacias. For. Ecol. Manage. 173: 1–10.CrossRefGoogle Scholar
  29. Davidson D.W. and Morton S.R., 1984. Dispersal adaptations of some Acacia species in the Australian arid zone. Ecology 65: 1038–1051.CrossRefGoogle Scholar
  30. Davis M.A., Grime J.P., and Thompson K., 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88: 528–534.CrossRefGoogle Scholar
  31. De Neergaard A., Saarnak C., Hill T., Khanyile M., Berzosa A.M., and Birch-Thomsen T., 2005. Australian wattle species in the Drakensberg region of South Africa — an invasive alien or a natural resource? Agric. Syst. 85: 216–233.CrossRefGoogle Scholar
  32. Dennill G.B. and Donnelly D., 1991. Biological control of Acacia longifolia and related weed species (Fabaceae) in South Africa. Agric. Ecosyst. Environ. 37: 115–135.CrossRefGoogle Scholar
  33. Di Castri F., 1989. History of biological invasions with special emphasis on the Old World. In: Drake J.A., Mooney H.A., di Castri F., Groves R.H., Kruger F.J., Rejmánek M., and Williamson M. (Eds.), Biological invasions: a global perspective, John Wiley & Sons, New York, USA.Google Scholar
  34. Dudley J.P., 1999. Seed dispersal of Acacia erioloba by African bush elephants in Hawange National Park, Zimbabwe. Afr. J. Ecol. 37: 375–385.CrossRefGoogle Scholar
  35. Edwards W. and Westoby M., 1996. Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrasts. J. Biogeogr. 23: 329–338.CrossRefGoogle Scholar
  36. Elton C.S., 1958. The ecology of invasions by animals and plants, Methuen, London, UK.Google Scholar
  37. Freire C.S., Coelho D.S., Santos N.M., Silvestre A.J., and Pascoal Neto C., 2005. Identification of Δ7-phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 40: 317–322.PubMedCrossRefGoogle Scholar
  38. Freire C.S.R., Silvestre A.J.D., and Pascoal Neto C., 2007. Demonstration of long-chain n—alkyl caffeates and Δ7-steryl glucosides in the bark of Acacia species by gas chromatography-mass spectrometry. Phytochem. Anal. 18: 151–156.PubMedCrossRefGoogle Scholar
  39. French K. and Major R.E., 2001. Effect of an exotic Acacia (Fabaceae) on ant assemblages in South African fynbos. Austral Ecol. 26: 303–310.CrossRefGoogle Scholar
  40. Gerald E. and Obua J., 2005. Tree condition and natural regeneration in disturbed sites of Bwindi Impenetrable Forest National Park, southwestern Uganda. Trop. Ecol. 46: 99–111.Google Scholar
  41. Gómez C. and Espadaler X., 1998. Myrmecochorous dispersal distances: a world survey. J. Biogeogr. 25: 573–580.CrossRefGoogle Scholar
  42. González L., Souto X.C., and Reigosa M.J., 1995. Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition. Forest Ecol. Manage. 77: 53–63.CrossRefGoogle Scholar
  43. Gray A., 1879. The predominance and pertinacity of weeds. Am. J. Sci. Arts 118: 161–167.Google Scholar
  44. Hadacek F., 2002. Secondary metabolites as plant traits: current assessment and future perspectives. Crit. Rev. Plant Sci. 21: 273–322.CrossRefGoogle Scholar
  45. Heil M., Delsinne T., Hilpert A., Schürkens S., Andary C., Linsenmair K.E. et al., 2002. Reduced chemical defense in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos 99: 457–468.CrossRefGoogle Scholar
  46. Hickey J.E., 1994. A floristic comparison of vascular species in Tasmanian oldgrowth mixed forest with regeneration resulting from logging and wildfire. Aust. J. Bot. 42: 383–404.CrossRefGoogle Scholar
  47. Hierro J.L., Maron J.L., and Callaway R.M., 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93: 5–15.CrossRefGoogle Scholar
  48. Hoffmann J.H., Impson F.A.C., Moran V.C., and Donnelly D., 2002. Biological control of invasive golden wattle trees (Acacia pycantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae), in South Africa. Biol. Control 25: 64–73.CrossRefGoogle Scholar
  49. Horvitz C.C. and Beattie A.J., 1980. Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. Am. J. Bot. 67: 321–326.CrossRefGoogle Scholar
  50. Hunt A.M., Unwin G.L., and Beadle C.L., 1999. Effects of naturally regenerated Acacia dealbata on the productivity of a Eucalyptus nitens plantation in Tasmania, Australia. For. Ecol. Manage. 117: 75–85.CrossRefGoogle Scholar
  51. Imperato F., 1982. A chalcone glycoside from Acacia dealbata. Phytochemistry 21: 480–481.CrossRefGoogle Scholar
  52. Inderjit, Callaway R.M., and Vivanco J.M. 2006. Plant biochemistry helps to understand invasion ecology. Trends Plant Sci. 11: 574–580.PubMedCrossRefGoogle Scholar
  53. Jadhav B.B. and Gaynar D.G., 1992. Allelopathic effects of Acacia auriculiformis A. Cunn on germination of rice and cowpea. Indian J. Plant. Physiol. 35: 86–89.Google Scholar
  54. Keane R.M. and Crawley M.J., 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17: 164–170.CrossRefGoogle Scholar
  55. Kenrick J., 2003. Review of pollen-pistil interactions and their relevance to reproductive biology of Acacia. Aust. Syst. Bot. 16: 119–130.CrossRefGoogle Scholar
  56. Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W., and Maywald G.F., 2003b. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40: 111–124.CrossRefGoogle Scholar
  57. Kulkarni M.G., Sparg S.G., and Van Staden J., 2007. Germination and post-germination response of Acacia seeds to smoke-water and butenolide, a smoke-derived compound. J. Arid Environ. 69: 177–187.CrossRefGoogle Scholar
  58. Kunii Y., Otsuka M., Kashino S., Takeuchi H., and Ohmori S., 1996. 4-Hydroxypipecolic acid and pipecolic acid in Acacia species: their determination by High-Performance Liquid Chromatography, its application to leguminous plants, and configuration of 4-hydroxypipecolic acid. J. Agric. Food. Chem. 44: 483–487.CrossRefGoogle Scholar
  59. Lake J.C. and Leishman M.R., 2004. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol. Conserv. 117: 215–226.CrossRefGoogle Scholar
  60. Lambers H., Chapin III F.S., and Pons T.L., 1998. Plant physiological ecology, Springer, Berlin, Germany.Google Scholar
  61. Lamprey H.F., 1967. Notes on the dispersal and germination of some tree seeds through the agency of mammals and birds. East Afr. Wildl. J. 5: 179–180.Google Scholar
  62. Lamprey H.F., Halevy G., and Makacho S., 1974. Interactions between Acacia, bruchid seed beetles and large herbivores. East Afr. Wildl. J. 12: 81–85.Google Scholar
  63. Lonsdale W.M., 1999. Global patterns of plant invasions and the concept of invisibility. Ecology 80: 1522–1536.CrossRefGoogle Scholar
  64. Lorenzo P., Pazos-Malvido E., González L., and Reigosa M.J., 2008. Allelopathic interference of invasive Acacia dealbata: physiological effects. Allelopathy J. 22: 452–462.Google Scholar
  65. Lortie C.J., Brooker R.W., Choler P., Kikvidze Z., Michalet R., Pugnaire F.I., and Callaway R.M., 2004. Rethinking plant community theory. Oikos 107: 433–438.CrossRefGoogle Scholar
  66. Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M., and Bazzaz F.A., 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10: 689–710.CrossRefGoogle Scholar
  67. Marchante H., Marchante E., Buscardo E., Maia J., and Freitas H., 2004. Recovery potential of dune ecosystems invaded by the exotic species Acacia longifolia. Weed Technol. 18: 1427–1433.CrossRefGoogle Scholar
  68. Martínez J., Vega-Garcia, C., and Chuvieco, E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 90: 1241–1252.CrossRefGoogle Scholar
  69. Maslin B.R., Miller J.T., and Seigler D.S., 2003. Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust. Syst. Bot. 16: 1–18.CrossRefGoogle Scholar
  70. Maslin R. and McDonald M.W., 2004. Acacia Search. Evaluation of Acacia as a woody crop option for southern Australia, RIRDC. Union Offset Printers, Canberra, Australia.Google Scholar
  71. May B.M. and Attiwill P.M., 2003. Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For. Ecol. Manage. 181: 339–355.CrossRefGoogle Scholar
  72. Midgley J.J. and Bond W.J., 2001. A synthesis of the demography of African acacias. J. Trop. Ecol. 17: 871–886.CrossRefGoogle Scholar
  73. Murphy H.T., Van der Wal, J., Lovett-Doust L., and Lovett-Doust J., 2006. Invasiveness in exotic plants: immigration and naturalization in an ecological continuum. In: Cadotte M.W., McMahon S.M., and Fukami T. (Eds.), Conceptual ecology and invasion biology: reciprocal approaches to nature, Dordrecht, Netherlands.Google Scholar
  74. Or K. and Ward, 2003. Three-way interactions between Acacia, large herbivores and bruchid beetles: a review. Afr. J. Ecol. 41: 257–265.CrossRefGoogle Scholar
  75. Orchard A.E. and Maslin B.R., 2003. Proposal to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type. Taxon 52: 362–363.CrossRefGoogle Scholar
  76. Osunkoya O.O., Bujang D., Moksin H., Wimmer F.L., and Holige T.M., 2004. Leaf properties and construction costs of common, cooccurring plant species of disturbed heath forest in Borneo. Aust. J. Bot. 52: 499–507.CrossRefGoogle Scholar
  77. Osunkoya O.O., Othman F.E., and Kahar R.S., 2005. Growth and competition between seedlings of an invasive plantation tree, Acacia mangium, and those of a native Borneo heath-forest species, Nelastoma beccarianum. Ecol. Res. 20: 205–214.CrossRefGoogle Scholar
  78. Pereira F.B.M., Domingues F.M.J., and Silva A.M.S., 1996. Triterpenes from Acacia dealbata. Nat. Prod. Lett. 8: 97–103.Google Scholar
  79. Pohlman C.L., Nicotra A.B., and Murray B.R., 2005. Geographic range size, seedling ecophysiology and phenotypic plasticity in Australian Acacia species. J. Biogeogr. 32: 351.CrossRefGoogle Scholar
  80. Procheş Ş., Wilson J.R.U., Richardson D.M., and Chown S.L., 2008. Herbivores, but not other insects, are scarce on alien plants. Austral Ecol. 33: 691–700.CrossRefGoogle Scholar
  81. Rafiqul Hoque A.T.M., Ahmed R., Uddin M.B., and Hossain M.K., 2003. Allelopathic effect of different concentration of water extracts of Acacia auriculiformis leaf on some initial growth parameters of five common agricultural crops. Pak. J. Agron. 2: 92–100.Google Scholar
  82. Rama Devi S. and Prasad M.N.V., 1991. Tannins and related polyphenols from ten common Acacia species of India. Bioresour. Technol. 36: 189–192.CrossRefGoogle Scholar
  83. Razanamandranto S., Tigabu M., Neya S., and Oden P.C., 2004. Effects of gut treatment on recovery and germinability of bovine and ovine ingested seeds of four woody species from the Sudanian savanna in West Africa. Flora 199: 389–397.Google Scholar
  84. Reigosa M.J., 1987. Estudio del potencial alelopático de Acacia dealbata Link. Ph.D. thesis, Universidad de SantiagoSantiago de Compostela, Spain.Google Scholar
  85. Reigosa M.J., Souto X.C., and Gonzalez L., 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28: 83–88.CrossRefGoogle Scholar
  86. Rice E.L., 1984. Allelopathy, Acacemic Press, Orlando, Florida.Google Scholar
  87. Rouget M. and Richardson D.M., 2003. Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environment factors. Am. Nat. 162: 713–724.PubMedCrossRefGoogle Scholar
  88. Schumann W., Little K.M., and Eccles N.S., 1995. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12: 170–172.Google Scholar
  89. Sedgley M. and Harbard J., 1993. Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae, Mimosoideae). Aust. J. Bot. 40: 601–609.CrossRefGoogle Scholar
  90. Seigler D.S., 2002. Economic potential from Western Australian Acacia species: secondary plant products. Conserv. Sci. W. Aust. 4: 109–116.Google Scholar
  91. Seigler D.S., 2003. Phytochemistry of Acacia-sensu lato. Biochem. Syst. Ecol. 31: 845–873.CrossRefGoogle Scholar
  92. Sharma G.P., Raghubanshi A.S., and Singh J.S., 2005a. Lantana invasion: An overview. Weed Biol. Manag. 5: 157–165.CrossRefGoogle Scholar
  93. Sharma G.P., Singh J.S., and Raghubanshi A.S., 2005b. Plant invasions: emerging trends and future implications. Curr. Sci. India 88: 726–734.Google Scholar
  94. Sheppard A.W., Shaw R.H., and Sforza R., 2006. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res. 46: 93–117.CrossRefGoogle Scholar
  95. Snyder R.E. and Chesson, P., 2004. How the scales of dispersal, competition, and environmental heterogeneity interact of affect coexistence. Am. Nat. 164: 633–650.PubMedCrossRefGoogle Scholar
  96. Souto X.C., Bolano J.C., Gonzalez L., and Reigosa M.J., 2001. Allelopathic effects of tree species on some soil microbial populations and herbaceous plants. Biol. Plant. 44: 269–275.CrossRefGoogle Scholar
  97. Spooner P.G., 2005. Response of Acacia species to disturbance by road-works in roadside environments in southern New Wales, Australia. Biol. Conserv. 122: 231–242.CrossRefGoogle Scholar
  98. Stone G.N., Raine N.E., Prescott M., and Willmer P.G., 2003. Pollination ecology of acacias (Fabaceae, Mimosoideae). Aust. Syst. Bot. 16: 103–118.CrossRefGoogle Scholar
  99. Sultan S.E., 1995. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44: 363–383.Google Scholar
  100. Theoharides K.A. and Dukes J.S., 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176: 256–273.PubMedCrossRefGoogle Scholar
  101. Tutin T.G., Burger N.A., Chater A.O., Edmonsen J.R., Heywood V.H., Moore D.M. et al., 2001. Flora Europaea V, Cambridge University Press, Cambridge, UK.Google Scholar
  102. Tybirk K., 1993. Pollination, breeding system and seed abortion in some African acacias. Bot. J. Linn. Soc. 112: 107–137.CrossRefGoogle Scholar
  103. Varela O. and Bucher E.H., 2006. Passage time, viability, and germination of seeds ingested by foxes. J. Arid Environ. 67: 566–578.CrossRefGoogle Scholar
  104. Whitney K.D., 2002. Dispersal for distance? Acacia ligulata seeds and meat ants Iridomyrmex viridiaeneus. Austral Ecol. 27: 589–595.CrossRefGoogle Scholar
  105. Wilcock C. and Neiland R., 2002. Pollination failure in plants: why it happens and when it matters. Trends Ecol. Evol. 7: 270–277.Google Scholar
  106. Wright I.J., Reich P.B., and Westoby M., 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Funct. Ecol. 15: 423–434.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Paula Lorenzo
    • 1
  • Luís González
    • 1
  • Manuel J. Reigosa
    • 1
  1. 1.Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade BioloxíaUniversidade de VigoVigoSpain

Personalised recommendations