Advertisement

Annals of Forest Science

, Volume 66, Issue 8, pp 809–809 | Cite as

Comparing floristic composition in treefall gaps of certified, conventionally managed and natural forests of northern Honduras

  • Mari KukkonenEmail author
  • Stefan Hohnwald
Original Article

Abstract

  • • Forest certification sets requirements for minimizing the impacts of logging on the natural structure and floristic composition of forests.

  • • We assessed the impact of certification by comparing the floristic composition of 52 taxa of trees and shrubs in the treefall gaps of certified, conventionally managed and protected forests in northern Honduras.

  • • The highest abundance of light-benefiting taxa was found in certified forests, whereas conventionally managed forests were floristically more similar to natural forests. The environmental conditions measured in certified gaps were not favourable for a natural forest floristic composition.

  • • Past logging may have altered the species composition in certified forests relatively more than in conventionally managed forests. This implies that the need for restoration operations should be considered in certification requirements, along with landscape-level planning to enhance post-logging recovery.

Keywords

floristic composition forest certification logging gap Honduras reducedimpact logging 

Abbreviations

FSC

Forest Stewardship Council

CeF

Certified forest

CoM

Conventionally managed forest

NaF

Natural (protected) forest

RIL

Reduced-impact logging

MN

Management-neutral

MS

Management-sensitive

Comparaison de la composition floristique dans les trouées d’abattage d’arbres dans les forêts certifiées, conventionnellement gérées et naturelles du Nord du Honduras

Résumé

  • • La certification forestière définit des exigences pour minimiser les impacts de l’exploitation forestière sur la structure naturelle et la composition floristique des forêts.

  • • Nous avons évalué l’impact de la certification, en comparant la composition floristique de 52 taxons d’arbres et d’arbustes dans les trouées d’abattage d’arbres de forêts certifiées, conventionnellement gérées et protégées du Nord du Honduras.

  • • La plus grande abondance des taxons profitant de la lumière a été trouvée dans les forêts certifiées, alors que les forêts gérées de façon conventionnelle ont été floristiquement plus proches des forêts naturelles. Les conditions environnementales mesurées dans les trouées certifiées n’étaient pas favorables à une composition floristique de forêt naturelle.

  • • L’exploitation forestière passée, peut avoir modifié la composition des espèces dans les forêts certifiées relativement plus que dans les forêts gérées. Cela implique que le besoin d’opérations de restauration doit être pris en compte dans les exigences de certification.

Mots-clés

composition floristique certification forestière trouée d’exploitation forestière Honduras exploitation forestière à impact réduit 

References

  1. Balderrama S.I.V. and Chazdon R.L., 2005. Light-dependent seedling survival and growth of four tree species in Costa Rican secondgrowth rain forests. J. Trop. Ecol. 21: 383–395.CrossRefGoogle Scholar
  2. Bermúdez A.M., Fernández-Palacios J.M., González-Mancebo J.M., Patiño J., Arévalo J.R., Otto R., and Delgado J.D., 2007. Floristic and structural recovery of a laurel forest community after clear-cutting: A 60 years chronosequence on La Palma (Canary Islands). Ann. For. Sci. 64: 109–119.CrossRefGoogle Scholar
  3. Brokaw N.V.L. and Grear J.S., 1991. Forest structure before and after hurricane Hugo at three elevations in the Luquillo Mountains, Puerto Rico. Biotropica 23: 386–392.CrossRefGoogle Scholar
  4. Carvalho de L.M.T., Fontes M.A.L., and Oliveira-Filho de A.T., 2000. Tree species distribution in canopy gaps and mature forest in an area of cloud forest of the Ibitipoca Range, south-eastern Brazil. Plant Ecol. 149: 9–22.CrossRefGoogle Scholar
  5. Chapman C.A. and Chapman L.J., 1997. Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda. Biotropica 29: 396–412.CrossRefGoogle Scholar
  6. Chazdon R.L., 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. 6: 51–71.Google Scholar
  7. Clark D.B., Palmer M.W., and Clark D.A., 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80: 2662–2675.CrossRefGoogle Scholar
  8. Cordero J. and Boshier D.H., 2004. Simarouba glauca DC. In: Cordero J. and Boshier D.H. (Eds.), Árboles de Centroamérica, CATIE, Oxford Forestry Institute, FRP, Oxford, UK, pp. 879–882.Google Scholar
  9. Crow T.R., 1980. A rainforest chronicle: a 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica 12: 42–55.CrossRefGoogle Scholar
  10. Cusack D. and Montagnini F., 2004. The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica. For. Ecol. Manage. 188: 1–15.CrossRefGoogle Scholar
  11. Dalling J.W., Muller-Landau H.C., Wright S.J., and Hubbell S.P., 2002. Role of dispersal in the recruitment limitation of neotropical pioneer species. J. Ecol. 90: 714–727.CrossRefGoogle Scholar
  12. Denslow J.S., Schultz J.C., Vitousek P.M., and Strain B.R., 1990. Growth responses of tropical shrubs to treefall gap environments. Ecology 71: 165–179.CrossRefGoogle Scholar
  13. Dickinson M.B., Whigham D.F., and Hermann S.M., 2000. Tree regeneration in felling and natural treefall disturbances in a semideciduous tropical forest in Mexico. For. Ecol. Manage. 134: 137–151.CrossRefGoogle Scholar
  14. Ferrando O.J.J., 1998. Composición y estructura del bosque latifoliado de la Costa Norte de Honduras: pautas ecológicas para su manejo. Master’s Thesis. CATIE, Turrialba, Costa Rica, 71 p.Google Scholar
  15. FSC (Forest Stewardship Council), 2004. Principles and Criteria for Forest Stewardship, Bonn, Germany.Google Scholar
  16. Gerwing J.J. and Uhl C., 2002. Pre-logging liana cutting reduces liana regeneration in logging gaps in the eastern Brazilian Amazon. Ecol. Appl. 12: 1642–1651.CrossRefGoogle Scholar
  17. Hartshorn G.S. and Poveda L.J., 1991. Lista de especies arborescentes. In: Janzen D.H. (Ed.), Historia natural de Costa Rica, Editorial de la Universidad de Costa Rica, San José, Costa Rica, pp. 160–186.Google Scholar
  18. Holdridge L.R., 1967. Life zone ecology, Tropical Science Center, San José, Costa Rica, 206 p.Google Scholar
  19. Holl K.D., 1999. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica 31: 229–242.CrossRefGoogle Scholar
  20. Jackson S.M., Fredericksen T.S., and Malcolm J.R., 2002. Area disturbed and residual stand damage following logging in a Bolivian tropical forest. For. Ecol. Manage. 166: 271–283.CrossRefGoogle Scholar
  21. Kass D.C.L. and Somarriba E., 1999. Traditional fallows in Latin America. Agrofor. Syst. 47: 13–36.CrossRefGoogle Scholar
  22. Kessler M., Kessler P.J.A., Gradstein S.R., Bach K., Schmull M., and Pitopang R., 2005. Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. Biodivers. Conserv. 14: 547–560.CrossRefGoogle Scholar
  23. Kukkonen M., Rita H., Hohnwald S., and Nygren A., 2008. Treefall gaps of certified, conventionally managed and natural forests as regeneration sites for neotropical timber trees in northern Honduras. For. Ecol. Manage. 255: 2163–2176.CrossRefGoogle Scholar
  24. Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data Using CANOCO, Cambridge University Press, Cambridge, UK, 269 p.Google Scholar
  25. Lewis S.L. and Tanner E.V.J., 2000. Effects of above- and belowground competition on growth and survival of rain forest tree seedlings. Ecology 81: 2525–2538.CrossRefGoogle Scholar
  26. Markopoulos M.D., 1999. The impacts of certification on campesino forestry groups in northern Honduras, Oxford Forestry Institute, Oxford, UK, 56 p.Google Scholar
  27. Martínez-Garza C., 2003. Selecting late-successional trees for tropical forest restoration, PhD Thesis, University of Illinois, Chicago, USA, 146 p.Google Scholar
  28. Pereira R.J., Zweede J.C., Asner G.P., and Keller M., 2002. Forest canopy damage and recovery in reduced-impact and conventional selective logging in eastern Para, Brazil. For. Ecol. Manage. 168: 77–89.CrossRefGoogle Scholar
  29. Primack R.B. and Lee H.S., 1991. Population dynamics of pioneer (Macaranga) trees and understorey (Mallotus) trees (Euphorbiaceae) in primary and selectively logged Bornean rain forests. J. Trop. Ecol. 7: 439–457.CrossRefGoogle Scholar
  30. Salazar R.B., 2000. Efectos del aprovechamiento forestal en la riqueza, diversidad y composición florística de un bosque húmedo en la costa norte de Honduras. Master’s Thesis. CATIE, Turrialba, Costa Rica. 90 p.Google Scholar
  31. Schnitzer S.A. and Bongers F., 2002. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17: 223–230.CrossRefGoogle Scholar
  32. Schnitzer S.A., Parren M.P.E., and Bongers F., 2004. Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. For. Ecol. Manage. 190: 87–98.CrossRefGoogle Scholar
  33. Schnitzer S.A., Kuzee M.E., and Bongers F., 2005. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93: 1115–1125.CrossRefGoogle Scholar
  34. Sist P., Nolan T., Bertault J.-G., and Dykstra D., 1998. Harvesting intensity versus sustainability in Indonesia. For. Ecol. Manage. 108: 251–260.CrossRefGoogle Scholar
  35. Sist P., Picard N., and Gourlet-Fleury S., 2003. Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo. Ann. For. Sci. 60: 803–814.CrossRefGoogle Scholar
  36. Sist P., Sheil D., Kartawinata K., and Priyadi H., 2003. Reduced-impact logging in Indonesian Borneo: some results confirming the need for new silvicultural prescriptions. For. Ecol. Manage. 179: 415–427.CrossRefGoogle Scholar
  37. SPSS Inc., 2007. SPSS for Windows, version 16.0, release 16.0.1., Chicago, USA.Google Scholar
  38. Ter Braak C.J.F. and Šmilauer P., 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, NY, USA, 500 p.Google Scholar
  39. Ter Braak C.J.F. and Šmilauer P., 2006. CANOCO for Windows, Biometrix — Plant Research International, Wageningen, The Netherlands.Google Scholar
  40. Uhl C. and Vieira I.C.G., 1989. Ecological impacts of selective logging in the Brazilian Amazon: a case study from the Paragominas region of the state of Pará. Biotropica 21: 98–106.CrossRefGoogle Scholar
  41. UNECE (United Nations Economic Commission for Europe)/FAO (Food and Agriculture Organization of the United Nations), 2008. Forest Products Annual Market Review 2007–2008, United Nations, New York and Geneva, 153 p.Google Scholar
  42. Van Kooten C.G., Nelson H.W., and Vertinsky I., 2005. Certification of sustainable forest management practices: a global perspective on why countries certify. Forest Policy Economy 7: 857–867.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biological and Environmental SciencesUniversity of HelsinkiFinland

Personalised recommendations