Advertisement

Annals of Forest Science

, Volume 66, Issue 8, pp 811–811 | Cite as

Coastal Douglas-fir provenance variation: patterns and predictions for British Columbia seed transfer

  • Jodie KrakowskiEmail author
  • Michael u. Stoehr
Original Article

Abstract

  • • We evaluated performance variability in two series of provenance trials of Pseudotsuga menziesii var. menziesii. EP 480 included 16 reciprocal provenances planted from British Columbia to Oregon, measured up to age 45. EP 599.03 featured five common provenances, plus the local source, planted at 23 British Columbia sites, measured up to age 33.

  • • Although residual variance was high, site accounted for 31 to 60% of the volume variance, while provenance accounted for 1–6%. Interactions were also significant across ages and trials. Genotype-environment interaction was evident in EP 599.03, but not EP 480, which may reflect differences in experimental design.

  • • The worst provenances always ranked low across sites and over time. No geographic or climatic (annual, seasonal, monthly) variables consistently explained patterns of volume across sites or ages, singly or in combination for either trial, similar to findings from other studies of coastal Douglas-fir. Provenances from Washington to central Oregon often performed as well as the local provenance or better at British Columbia trial sites. Populations from higher elevations, poor sites and submaritime provenances were less vigorous.

  • • Results support maintaining elevational and ecotypic transfer limits, emphasizing site-specific decision making, and permitting wider latitudinal transfer on similar quality sites.

Keywords

adaptation genecology provenance Pseudotsuga menziesii seed transfer 

Variation des provenances côtières de sapin de Douglas : modèles et prévisions pour le transfert des semences de Colombie-Britannique

Résumé

  • • Nous avons évalué la variabilité des performances de provenances de Pseudotsuga menziesii var. menziesii dans deux séries d’essais. EP 480 comprend 16 provenances réciproques plantées de la Colombie-Britannique à l’Oregon, mesurées jusqu’à 45 ans. Dans EP 599.03 figurent cinq provenances communes, ainsi que la source locale, plantées dans 23 sites en Colombie-Britannique, mesurées jusqu’à 33 ans.

  • • Bien que la variance résiduelle soit élevée, le site a représenté 31 à 60 % de la variance du volume, tandis que la provenance représentait 1.6 %. Les interactions ont également été significatives dans les âges et les essais. L’interaction génotype-environnement est évidente dans EP 599,03, mais pas dans EP 480, ce qui peut refléter des différences dans la conception expérimentale.

  • • Les mauvaises provenances sont toujours classées bas à travers les sites et au cours du temps. Aucune variable géographique ou climatique (annuelle, saisonnière, mensuelle) n’a constamment expliqué les modèles de volume à travers les sites ou les âges, séparément ou en association pour n’importe lequel des essais, similairement aux résultats d’autres études sur les provenances côtières de sapin de Douglas. Les provenances de l’État de Washington jusqu’au centre de l’Oregon sont souvent aussi bien performantes que la provenance locale ou meilleures dans les sites d’essais en Colombie-Britannique. Les populations des plus hautes altitudes, des sites pauvres et les provenances sub-maritimes ont été moins vigoureuses.

  • • Les résultats sont en faveur du maintien de transferts altitudinaux et écotypiques limités, en mettant l’accent sur une prise de décision spécifique au niveau du site, et en permettant un transfert latitudinal plus grand sur des sites de qualité semblables.

Mots-clés

adaptation génécologie provenance Pseudotsuga menziesii transfert de semence 

References

  1. Burdon R.C., 1977. Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silvae Genet. 26: 168–175.Google Scholar
  2. Campbell R.K., 1979. Genecology of Dougals-fir in a watershed in the Oregon Cascades. Ecology 60: 1036–1050.CrossRefGoogle Scholar
  3. Campbell R.K., 1986. Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet. 35: 85–96.Google Scholar
  4. Campbell R.K. and Sugano A.I., 1993. Genetic variation and seed zones of Douglas-fir in the Siskiyou National Forest. USDA For. Serv., Pacific Northwest Research Station, Portland, OR. PNW-RP-455, 21 p.Google Scholar
  5. Ching K.K. and Bever D., 1960. Provenance study of Douglas-fir in the Pacific Northwest region. I. Nursery performance. Silvae Genet. 9: 11–17.Google Scholar
  6. Ching K.K. and Hinz P.N., 1978. Provenance study of Douglas-fir in the Pacific Northwest region. III. Field performance at age twenty years. Silvae Genet. 27: 229–233.Google Scholar
  7. Christophe C. and Birot Y., 1979. Genetic variation within and between populations of Douglas fir. Silvae Genet. 28: 197–206.Google Scholar
  8. Hamann A. and Wang T.L., 2005. Models of climatic normals for genecology and climate change studies in British Columbia. Agric. For. Meteorol. 128: 221–211.Google Scholar
  9. Hamann A. and Wang T., 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87: 2773–2786.PubMedCrossRefGoogle Scholar
  10. Hermann R.K. and Lavender D.P., 1968. Early growth of Douglas-fir from various altitudes and aspects in southern Oregon. Silvae Genet. 17: 143–151.Google Scholar
  11. Irgens-Moller H., 1957. Ecotypic response to temperature and photoperiod in Douglas-fir. For. Sci. 3: 79–83.Google Scholar
  12. Klinka K., Worrall J., Skoda L., and Varga P., 2000. The distribution and synopsis of ecological and silvical characteristics of tree species of British Columbia’s forests. Canadian Cartographics, Coquitlam, B.C., 180 p.Google Scholar
  13. Mátyás C., 1994. Modeling climate change effects with provenance test data. Tree Physiol. 14: 797–804.PubMedGoogle Scholar
  14. Nuszdorfer F.C., Klinka K., and Demarchi D.A., 1990. Coastal Douglasfir Zone. In: Ecosystems of British Columbia. Min. For., Victoria, B.C., Special Rep. 6, p. 81–93.Google Scholar
  15. O’Neill G.A., Hamann A., and Wang T., 2008. Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. J. Appl. Ecol. 45: 1040–1049.CrossRefGoogle Scholar
  16. Province of British Columbia, 2005 [amended 2007]. Chief forester’s standards for seed use. Standard under the Forest and Range Practices Act, S.B.C. 2002, S.169 (1).Google Scholar
  17. Rehfeldt G.E., 1977. Growth and cold hardiness of intervarietal hybrids of Douglas fir. Theor. Appl. Genet. 50: 3–15.CrossRefGoogle Scholar
  18. Rowe K.E. and Ching K.K., 1973. Provenance study of Douglas-fir in the Pacific Northwest region. Silvae Genet. 22: 115–119.Google Scholar
  19. Schmidt R., 1967. B.C. Forest Service initiates Douglas-fir provenance study. BC Lumberman, March 1967.Google Scholar
  20. Sorensen F.C., 1983. Geographic variation in seedling Douglas-fir (Pseudotsuga menziesii) from the western Siskiyou mountains of Oregon. Ecology 64: 696–702.CrossRefGoogle Scholar
  21. Spittlehouse D.L., 2008. Climate change, impacts, and adaptation scenarios: climate change and forest and range management in British Columbia, Min. For. Range, Res. Br., Victoria, B.C., Tech. Rep. 045, 38 p.Google Scholar
  22. St. Clair, J.B., Howe G.T., 2007. Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Glob. Change Biol. 13: 1441–1454.CrossRefGoogle Scholar
  23. St. Clair, J.B., Mandel N.L., and Vance-Borland K.W., 2005. Genecology of Douglas-fir in western Oregon and Washington. Ann. Bot. 96: 1199–1214.PubMedCrossRefGoogle Scholar
  24. Stonecypher R.W., 1990. Assessing effects of seed transfer for selected parents of Douglas-fir: experimental methods and early results. Joint Meeting of Western Forest Genetics Association and IUFRO Working Parties, S2.02-05, 06, 12 and 14. Olympia, Wash., USA p. 2.290.Google Scholar
  25. Wang T., Hamann A., Yanchuk A., O’Neill G.A., and Aitken S.N., 2006a. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12: 2404–2416.CrossRefGoogle Scholar
  26. Wang T., Hamann, A., Spittlehouse D., and Aitken S.N., 2006b. Development of PRISM based scale-free climate data for western Canada. Int. J. Climat. 26: 383–397.CrossRefGoogle Scholar
  27. White T.L. and Ching K.K., 1985. Provenance study of Douglas-fir in the Pacific Northwest region. IV. Field performance at age 25 years. Silvae Genet. 34: 84–90.Google Scholar
  28. Ying C.C., 1990. Adaptive variation in Douglas-fir, Sitka spruce and true fir: a summary of provenance research in coastal British Columbia (abstract). Joint Meeting of Western Forest Genetics Association and IUFRO Working Parties, S2.02-05, 06, 12 and 14. Olympia, Wash., USA p. 2.387.Google Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  1. 1.Cowichan Lake Research Station, Research BranchMinistry of Forests and RangeMesachie LakeCanada
  2. 2.Research BranchMinistry of Forests and RangeVictoriaCanada

Personalised recommendations