Advertisement

Annals of Forest Science

, Volume 66, Issue 7, pp 704–704 | Cite as

Fall fertilization of Pinus resinosa seedlings: nutrient uptake, cold hardiness, and morphological development

  • M. Anisul Islam
  • Kent G. Apostol
  • Douglass F. JacobsEmail author
  • R. Kasten Dumroese
Original Article

Abstract

  • • Fall fertilization may increase plant nutrient reserves, yet associated impacts on seedling cold hardiness are relatively unexplored.

  • • Bareroot red pine (Pinus resinosa Ait.) seedlings in north-central Minnesota, USA were fall fertilized at the end of the first growing season with ammonium nitrate (NH4NO3) at 0, 11, 22, 44, or 89 kg N ha−1. Seedling morphology and cold hardiness [assessed by freeze induced electrolyte leakage (FIEL)] were evaluated six weeks after fertilization and following the second growing season.

  • • Seedling height and number of needle primordia increased with fertilizer rate for both sampling years. Seedlings fertilized with 44 and 89 kg N ha−1 attained target height (15 cm) after the second growing season. Shoot and root N concentration increased after the first growing season in fall fertilized seedlings compared to controls. Fall fertilized seedlings had lower FIEL (i.e., increased cold hardiness) compared to controls when tested at −40 °C after the first growing season, but no significant differences in FIEL of control and fertilized seedlings were observed after the second growing season.

  • • Results suggest that fall fertilization of red pine seedlings can help render desired target height in the nursery, while maintaining or increasing cold hardiness levels.

Keywords

cold hardiness growth nitrogen fertilization needle primordia 

Fertilisation automnale des plants de Pinus resinosa : absorption des éléments nutritifs, rusticité au froid, et développement morphologique

Résumé

  • • La fertilisation automnale peut augmenter les réserves en éléments nutritifs des plants, mais les répercussions sur la rusticité au froid des semis sont encore relativement inexplorées.

  • • Des plants à racines nues de Pinus resinosa Ait.dans le centre-nord du Minnesota (USA) ont été fertilisés à l’automne à la fin de la première saison de croissance avec du nitrate d’ammonium (NH4NO3) à 0, 11, 22, 44, ou 89 kg N ha−1. La morphologie des plants et la rusticité au froid [estimée par la fuite d’électrolyte (FIEL) induite par le gel] ont été évaluées six semaines après la fertilisation et à la suite dans la deuxième saison de croissance.

  • • La hauteur des plants et le nombre de primordiums d’aiguilles ont augmenté avec le taux de fertilisation pour les deux années d’échantillonnage. Les plants fertilisés avec 44 et 89 kg N ha−1 ont atteint l’objectif de hauteur (15 cm) après la deuxième saison de croissance. La concentration en N des tiges et des racines a augmenté après la première saison de croissance chez les plants fertilisés à l’automne par rapport aux témoins. Les plants fertilisés à l’automne ont eu un plus faible FIEL (c’est-à-dire, une augmentation de rusticité), comparativement aux témoins lors du test à −40 °C après la première saison de croissance, mais aucune différence significative de FIEL entre plants fertilisés et témoins n’a été observée après la deuxième saison de croissance.

  • • Les résultats suggèrent que la fertilisation d’automne des plants de Pinus resinosa Ait. peut aider à obtenir l’objectif de hauteur souhaité dans la pépinière, tout en maintenant ou en augmentant les niveaux de rusticité au froid.

Mots-clés

rusticité au froid croissance fertilisation azotée primordiums d’aiguilles 

References

  1. Aronsson A., 1980. Frost hardiness in Scots pine (Pinus silvestris L.). II. Hardiness during winter and spring in young trees of different mineral nutrient status. Stud. For. Suec. 155: 1–27.Google Scholar
  2. Bigras F.J., Gonzales A., D’Aoust A.L., and Hébert C., 1996. Frost hardiness, bud phenology, and growth of containerized Picea mariana seedlings grown at three nitrogen levels and three temperature regimes. New For.12: 243–259.Google Scholar
  3. Birchler T.M., Rose R., and Haase D., 2001. Fall fertilization with N and K: Effects on Douglass-fir seedling quality and performance. West. J. Appl. For. 16: 71–79.Google Scholar
  4. Birge Z.K.D., Salifu K.F., and Jacobs D.F., 2006. Modified exponential nitrogen loading to promote morphological quality and nutrient storage of bareroot-cultured Quercus rubra and Quercus alba seedlings. Scand. J. For. Res. 21: 306–316.CrossRefGoogle Scholar
  5. Boivin J.R., Salifu K.F., and Timmer V.R., 2004. Late-season fertilization of Picea mariana seedlings: intensive loading and outplanting response on greenhouse bioassays. Ann. For. Sci. 61: 737–745.CrossRefGoogle Scholar
  6. Burr K.E., Tinus R.W., Wallner S.J., and King R.M., 1990. Comparison of three cold hardiness tests for conifer seedlings. Tree Physiol. 6: 351–369.PubMedGoogle Scholar
  7. Calmé S., Margolis H.A., and Bigras F.J., 1993. Influence of cultural practices on the relationship between frost tolerance and water content of containerized black spruce, white spruce, and jack pine seedlings. Can. J. For. Res. 23: 503–511.CrossRefGoogle Scholar
  8. Colombo S.J., Glerum C., and Webb D.P., 2003. Daylength, temperature and fertilization effects on desiccation resistance, cold hardiness and root growth potential of Picea mariana seedlings. Ann. For. Sci. 60: 307–317.CrossRefGoogle Scholar
  9. DeHayes D.H., Ingle M.A., and Waite C.E., 1989. Nitrogen fertilization enhances cold tolerance of red spruce seedlings. Can. J. For. Res. 19: 1037–1043.CrossRefGoogle Scholar
  10. Dumroese R.K., Page-Dumroese D.S., Salifu K.F., and Jacobs D.F., 2005. Exponential fertilization of Pinus monticola seedlings: nutrient uptake efficiency, leaching fractions, and early outplanting performance. Can. J. For. Res. 35: 2961–2967.CrossRefGoogle Scholar
  11. Fernandez M., Marcos C., Tapias R., Ruiz F., and López G., 2007. Nursery fertilisation affects the forst-tolerance and plant quality of Eucalyptus globulus Labill. Cuttings. Ann. for. Sci. 64: 865–873.CrossRefGoogle Scholar
  12. Fløistad I.S. and Kohmann K., 2004. Influence of nutrient supply on spring frost hardiness and time of bud break in Norway spruce (Picea abies (L.) Karst.) seedlings. New For. 27: 1–11.CrossRefGoogle Scholar
  13. Fuchigami L.H. and Nee C., 1987. Degree stage growth model and rest-breaking mechanisms in temperate woody plants. HortScience 22: 836–845.Google Scholar
  14. Gleason J.F., Duryea M.L., Rose R., and Atkinson M., 1990. Nursery and field fertilization of 2+0 ponderosa pine seedlings: the effect on morphology, physiology, and field performance. Can. J. For. Res. 20: 1766–1772.CrossRefGoogle Scholar
  15. Hawkins B.J., Davradou M., Pier D., and Shortt R., 1995. Frost hardiness and winter photosynthesis of Thuja plicata and Pseudotsuga menziesii seedlings grown at three rates of nitrogen and phosphorus supply. Can. J. For. Res. 25: 18–28.CrossRefGoogle Scholar
  16. Hellergren J., 1981. Frost hardiness development in Pinus silvestris seedlings in response to fertilization. Physiol. Plant. 52: 297–301.CrossRefGoogle Scholar
  17. Irwin K.M., Duryea M.L., and Stone E.L., 1998. Fall-applied nitrogen improves performance of 1 + 0 slash pine nursery seedlings after outplanting. South. J. Appl. For. 22: 111–116.Google Scholar
  18. ]Islam M.A., Apostol K.G., Dumroese R.K., and Jacobs D.F., 2008. Effects of fall fertilization on morphology, growth, and cold hardiness of red pine (Pinus resinosa Ait.) seedlings. In: Riley L.E., and Dumroese R.K. (Eds.), National Proceedings: Forest and Conservation Nursery Associations-2007. Fort Collins (CO): USDA Forest Service, Rocky Mountain Research Station, Proceedings, RMRS-P-57, pp. 72–78.Google Scholar
  19. Jacobs D.F., Wilson B.C., Ross-Davis A.L., and Davis A.S., 2008. Cold hardiness and transplant response of Juglans nigra seedlings subjected to alternative storage regimes. Ann. For. Sci. 65: 606.CrossRefGoogle Scholar
  20. Kontunen-Soppela S., 2001. Dehydrins in Scots pine tissues: responses to annual rhythm, low temperature and nitrogen, Oulu university press, Oulu, Finland, 44 p., URL: http://herkules.oulu.fi/isbn9514259114/.Google Scholar
  21. Landis T.D., 1985. Mineral nutrition as an index of seedling quality. Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. In: Dureya M.L. (Ed.), Forest Research Laboratory, Oregon State University, Corvallis, OR, pp. 29–48.Google Scholar
  22. L’hirondelle S.J., Jacobson J.S., and Lassoie J.P., 1992. Acidic mist and nitrogen fertilization effects on growth, nitrate reductase activity, gas exchange, and frost hardiness of red spruce seedlings. New Phytol. 121: 611–622.CrossRefGoogle Scholar
  23. Luoranen J., Lahti M., and Rikala R., 2008. Frost hardiness of nutrient-loaded two-year-old Picea abies seedlings in autumn and at the end of freezer storage. New For. 35: 207–220.CrossRefGoogle Scholar
  24. Margolis H.A. and Waring R.H., 1986. Carbon and nitrogen allocation of Douglas-fir seedlings fertilized with nitrogen in autumn. I. Overwinter metabolism. Can. J. For. Res. 16: 897–902.CrossRefGoogle Scholar
  25. Martz F., Sutinen M.-L., Kiviniemi S., and Palta J.P., 2006. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiol. 26: 783–790.PubMedGoogle Scholar
  26. Rudolf P.O., 1990. Pinus resinosa Ait. Red Pine. In: Burns R.M., Honkala B.H. (Eds.), Silvics of North America, Volume 1: Conifers, Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC.Google Scholar
  27. Soikkeli S. and Karenlampi L., 1984. The effects of nitrogen fertilization on the ultrastructure of mesophyll cells of conifer needles in northern Finland. Eur. J. For. Pathol. 14: 129–136.CrossRefGoogle Scholar
  28. Sung S.S., Black C.C., Kormanik T.L., Zarnoch S.J., Kormanik P.P., and Counce P.A., 1997. Fall nitrogen fertilization and the biology of Pinus taeda seedling development. Can. J. For. Res. 27: 1406–1412.CrossRefGoogle Scholar
  29. Sutinen M.-L., Palta J.P., and Reich P.B., 1992. Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol. 11: 241–254.PubMedGoogle Scholar
  30. Templeton C.W.G., Odlum K.D., and Colombo S.J., 1993. How to identify bud initiation and count needle primordia in first-year spruce seedlings. Forestry Chronicle 69: 431–437.Google Scholar
  31. Thompson B., 1983. Why fall fertilize? In: Proceedings of the Western Nurseryman’s Conference, August 10–12, 1982, Medford, OR, Southern Oregon State College, Ashland, OR, USA.Google Scholar
  32. Timmis R., 1974. Effect of nutrient status on growth, bud set, and hardiness in Douglas-fir seedlings. In: Tinus R.W., Stein W.I., Balmer W.E. (Eds.), Proceedings of North American containerized forest tree seedlings symposium. Denver, Colorado. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, Great Plains Agric. Counc. Publ. No. 68, pp. 187–193.Google Scholar
  33. Van den Driessche R., 1985. Late season fertilization, mineral nutrient reserves, and retranslocation in planted Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. For. Sci. 31: 485–496.Google Scholar
  34. Van den Driessche R., 1988. Nursery growth of conifer seedlings using fertilizers of different solubilities and application time, and their forest growth. Can. J. For. Res. 18: 172–180.CrossRefGoogle Scholar
  35. VanderSchaaf C. and McNabb K., 2004. Winter nitrogen fertilization of loblolly pine seedlings. Plant Soil 265: 295–299.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • M. Anisul Islam
    • 1
  • Kent G. Apostol
    • 2
  • Douglass F. Jacobs
    • 1
    Email author
  • R. Kasten Dumroese
    • 3
  1. 1.Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  2. 2.Department of Biological SciencesBethel UniversitySt. PaulUSA
  3. 3.Rocky Mountain Research StationUSDA Forest ServiceMoscowUSA

Personalised recommendations